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Abstract. Concepts of the lattice Boltzmann method are discussed in detail for the
one-dimensional kinetic model. Various techniques of constructing lattice Boltzmann
models are discussed, and novel collision integrals are derived. Geometry of the ki-
netic space and the role of the thermodynamic projector is elucidated.

PACS: 02.90.+p, 05.10.-a, 47.10.ad

Key words: Entropic lattice Boltzmann method, entropy, collision integrals, kinetic theory, multi-
scale expansion.

1 Introduction

In the first paper of this series [1], we have discussed some primary concepts of the lattice
Boltzmann method for solving partial differential equations. The goal of the present pa-
per is to extend the introduction of the lattice Boltzmann method to nonlinear problems
while keeping the presentation as elementary as possible.

The outline of the paper is as follows. In Section 2 we consider the one-dimensional
Navier-Stokes equations, and identify the requirements for lifting them to a kinetic equa-
tion. Construction of the kinetic equation begins in Section 3 where we derive the perti-
nent entropy function. In Section 4, we derive the corresponding equilibrium. In Section
5, we describe geometry of the phase space of kinetic equations, hydrodynamic and ki-
netic subspaces, and introduce the notion of detail balance as a geometrical statement.
This section contains preliminary information which is used in the construction of colli-
sion integrals (Section 6). We develop general methods of constructing admissible colli-
sion integrals based on the entropy function. In Section 7, we consider linearization of
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collision integrals at equilibrium, and discuss in detail the notion of thermodynamic pro-
jector. In Section 8 we consider a special class of collision integrals which have the feature
that their linearization is spectrally equivalent to the linearized Bhatnagar-Gross-Krook
kinetic model (single relaxation time gradient models). In Section 9 we consider the en-
tropic lattice Boltzmann scheme for these new models, and give a thorough analysis of
the hydrodynamic limit of the discrete-time kinetic equation. We conclude in Section 10
with a brief discussion.

Finally, we did every effort to make the presentation self-containing, thus, references
are kept at a minimal level. For a further reading on the lattice Boltzmann method, we
direct the reader to the papers [2–5] and reviews [6–9]. Development of the entropic
lattice Boltzmann method can be found in [10–20].

2 Hydrodynamic and kinetic equations

2.1 Navier-Stokes equations in one dimension

The target equations are the balance equations for the density ρ(x,t) and the momentum
density j(x,t)=ρu(x,t):

∂tρ+∂x(ρu)=0, (2.1)

∂t(ρu)+∂xP=0, (2.2)

P=ρc2
s +ρu2−2νρ∂xu. (2.3)

This is the simplest example of the Navier-Stokes equations. We have written them in the
‘conservation laws + constitutive equation’ form. Now we have two equations for the
conservation laws (for the density ρ and for the momentum j). The constitutive equation
for the pressure P (2.3) consists of two parts. The first part, PE,

PE =ρc2
s +ρu2, (2.4)

is the value of the pressure at the equilibrium. If (2.4) is substituted instead of P in the
balance equation for the momentum (2.2), the resulting non-dissipative hydrodynamic
equations (2.1) and (2.2) form the simplest set of Euler equations. The second part of the
pressure, Pneq is the non-equilibrium contribution,

PNS =−2νρ∂xu. (2.5)

Parameter ν > 0 is the viscosity coefficient. While in the Eqs. (2.3) and (2.5) the viscosity
coefficient appears simply as a parameter, we can infer that it will be expressed in terms
of kinetic parameters of the kinetic models (relaxation time) once we will write it down
(the same happened to the diffusion coefficient in the example of the advection-diffusion
equation in [1]). The form of the constitutive relation (2.5) where the non-equilibrium
pressure is proportional to the gradient of the momentum is typical of the Newtonian
fluid.


