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Abstract. In this paper, we propose efficient algorithms for approximating particular
solutions of second and fourth order elliptic equations. The approximation of the par-
ticular solution by a truncated series of Chebyshev polynomials and the satisfaction
of the differential equation lead to upper triangular block systems, each block being
an upper triangular system. These systems can be solved efficiently by standard tech-
niques. Several numerical examples are presented for each case.
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1 Introduction

Boundary methods such as the Boundary Integral Equation Method (BIEM) [2, 5] and
the Method of Fundamental Solutions (MFS) [12,16] are numerical techniques applicable
for the numerical solution certain elliptic boundary value problems. In these methods,
the dimension of the problem is reduced by one as only the boundary of the domain of
the problem under consideration needs to be discretized. The advantages of these tech-
niques can be fully exploited if the governing differential equation is homogeneous. It
is therefore often desirable to convert an elliptic boundary value problem governed by
an inhomogeneous differential equation to one governed by a homogeneous differen-
tial equation. This can be achieved using the Method of Particular Solutions (MPS). To
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describe the MPS, consider the boundary value problem

Lu= f in Ω, u= g on ∂Ω, (1.1)

where L is a second order linear elliptic operator and Ω is an open bounded domain in R
2

with boundary ∂Ω. If up is a particular solution of the governing equation, then it satisfies
Lup = f but does not necessarily satisfy the boundary condition. If we let v=u−up, then
v satisfies the boundary value problem

Lv=0 in Ω, v= g−up on ∂Ω. (1.2)

Clearly, the governing equation is now homogeneous and thus problem (1.2) can be easily
solved using a boundary-type method. In order to transform problem (1.1) into problem
(1.2), we need to construct an approximation to the particular solution up.

In recent years, many methods have been proposed for the approximation of particu-
lar solutions. These methods may be classified as direct or indirect [10]. Direct methods
approximate a solution of Lup = f by a numerical method. For example, it is well-known
that a particular solution of the Poisson equation ∆up= f in R

2 is given by the Newtonian
potential [1]

up(P)=
1

2π

∫

Ω
log|P−Q| f (Q)dV(Q), (1.3)

where |P−Q| denotes the distance between the points P and Q. In general, the inte-
gral (1.3) cannot be evaluated analytically and so numerical integration is used. Since
Ω can have an arbitrary shape, the numerical evaluation of the integral (1.3) requires a
complicated domain discretization of Ω. To avoid the difficulties associated with such
a discretization, Atkinson’s method [1] may be used. In it, one assumes that f can be
extended smoothly to Ω̃, where Ω⊆Ω̃. Then up(P)= 1

2π

∫

Ω̃
log|P−Q| f (Q)dV(Q) is also a

particular solution of ∆up = f . The advantage of using this expression instead of (1.3)
is that the domain Ω̃ may be chosen so that the calculation of the integral is simpli-
fied [14]. The indirect approach for solving, for example, Poisson problems, is based
on the Dual Reciprocity Method (DRM) [9, 17, 25]. In the DRM, the source term f is
approximated by f̂ = ∑

n
i=1 ai f̂i, where { f̂i}

n
i=1 is an appropriate set of functions. An ap-

proximation to the particular solution up is obtained by taking ûp =∑
n
i=1 aiûi, where each

ûi satisfies ∆ûi = f̂i. An appropriate set of functions is the set of Radial Basis Functions
(RBFs) [7, 9, 15, 17, 18, 22]. The most popular RBFs are thin plate and higher order radial
splines, multiquadrics and Gaussians which are all globally supported [9,10,17–19]. The
problem is that these globally supported basis functions lead to dense systems which can
be highly ill-conditioned [9]. This difficulty can be overcome by using compactly sup-
ported RBFs (CS-RBFs) which have been extensively discussed in [9, 17]. The most pop-
ular CS-RBFs are Wendland’s CS-RBFs [9, 17]. Polynomials and trigonometric functions
have also been used as basis functions [22]. With these sets of basis functions a number
of numerical methods can be used for determining approximation f̂ [9, 10, 17, 22]. The
properties of orthogonal polynomials, such as Chebyshev and Legendre polynomials are


