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Abstract. A numerical algorithm for effective incorporation of parametric uncertainty
into mathematical models is presented. The uncertain parameters are modeled as ran-
dom variables, and the governing equations are treated as stochastic. The solutions,
or quantities of interests, are expressed as convergent series of orthogonal polynomial
expansions in terms of the input random parameters. A high-order stochastic collo-
cation method is employed to solve the solution statistics, and more importantly, to
reconstruct the polynomial expansion. While retaining the high accuracy by polyno-
mial expansion, the resulting “pseudo-spectral” type algorithm is straightforward to
implement as it requires only repetitive deterministic simulations. An estimate on er-
ror bounded is presented, along with numerical examples for problems with relatively
complicated forms of governing equations.
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1 Introduction

The focus of this paper is on efficient numerical methods for differential/algebraic equa-
tions with random/uncertain parameters. In the past years, this subject has received
increasing amount of attention in a variety of engineering disciplines, especially those
involving complex physics. In such complex fields, mathematical models can only serve
as simplified and reduced representations of true physics, and there exists a signifi-
cant amount of uncertainty associated with parameter values, boundary/initial condi-
tions, constitutive laws, etc. For example, biochemical reactions are often modeled by
(large) systems of ordinary differential equations (ODEs) or differential-algebraic equa-
tions (DAEs). Although these models have been successful in revealing quantitative con-
nections between reaction details and observables, their usage is often constrained by the
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difficulty of assigning numerical values to kinetic parameters (e.g., rate constants and
binding constants) in the governing equations. Common approach is to conduct param-
eter estimation, in order to bring numerical solutions in reasonable agreement with a set
of experimental observations. Because of the complexity of most biochemical processes
and the diversity of the type of data to be fitted, the estimated model parameters usu-
ally contain significant uncertainties, rather than having precise numerical values. Tradi-
tional approach assigns “most likely” values to the parameters from their corresponding
ranges, and such an approach could be inadequate as the complex biochemical processes
may depend sensitively to some of the parameters. Also, very often observables from
experiment measurements are not repeated enough times for reliable statistical estimates
to be made on the “likelihood” of the parameter values. (General discussions on math-
ematical biology can be found in [6, 21], etc.) Therefore, mathematical and numerical
techniques are needed to develop effective means of quantifying parameter uncertainty
and its effect in complex systems.

In this paper we discuss an efficient method for parametric uncertainty analysis in
(ordinary) differential-algebraic equations (DAEs). The uncertain parameters associated
with the models are modeled as random variables. Subsequently, the resulting DAEs
become stochastic equations. We remark that this type of stochastic systems are different
from the classical “stochastic differential equations” (SDE) where the random inputs are
some idealized processes such as Wiener processes, Poisson processes, etc., and tools
such as stochastic calculus have been developed extensively and are still under active
research. (See, for example, [9, 14, 15, 20].) In the problems considered in this paper, the
random inputs are parameters modeled as random variables.

One of the most commonly used methods is Monte Carlo sampling (MCS), or one
of its variants. Although MCS is straightforward to apply as it only requires repetitive
executions of deterministic simulations, typically a large number of such executions are
needed as the solution statistics converge relatively slowly, e.g., the mean value typi-
cally converges as 1/

√
K where K is the number of realizations [7]. The resulting sta-

tistical errors due to insufficient number of realizations can undermine the conclusions
of uncertainty analysis such as the level of confidence in model selection and parameter
estimates, etc. The need for large number of realizations for accurate results can incur
excessive computational burden, especially for systems that are already computationally
intensive in their deterministic settings.

A recently developed method, generalized polynomial chaos (gPC) [28, 30], belong
to the class of non-sampling methods. With gPC, stochastic quantities are expressed as
orthogonal polynomials of the input random parameters, and different types of orthog-
onal polynomials can be chosen to achieve better convergence. gPC expansion is es-
sentially a spectral representation in random space, and exhibits fast convergence when
the expanded function depends smoothly on the random parameters. Exponentially fast
convergence can be achieved under certain circumstances. (See [2,28] for detailed discus-
sions.)

When applied to differential equations with random inputs, the quantities to be solved


