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Abstract. This paper presents a new finite-volume discretization of a generalised Lat-
tice Boltzmann equation (LBE) on unstructured grids. This equation is the continuum
LBE, with the addition of a second order time derivative term (memory), and is de-
rived from a second-order differential form of the semi-discrete Boltzmann equation
in its implicit form. The new scheme, named unstructured lattice Boltzmann equation
with memory (ULBEM), can be advanced in time with a larger time-step than the pre-
vious unstructured LB formulations, and a theoretical demonstration of the improved
stability is provided. Taylor vortex simulations show that the viscosity is the same as
with standard ULBE and demonstrates that the new scheme improves both stability
and accuracy. Model validation is also demonstrated by simulating backward-facing
step flow at low and moderate Reynolds numbers, as well as by comparing the reat-
tachment length of the recirculating eddy behind the step against experimental and
numerical data available in literature.
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1 Introduction

In the last decade, the lattice Boltzmann method (LBM) has become an established nu-
merical approach in computational fluid dynamics. Many models and extensions have
been formulated that cover a wide range of complex fluids and flows [1, 2]. The LBM,
that originally evolved from lattice gas models, is based on a minimal kinetic Boltzmann
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equation in which representative particles (’parcels of fluids’) evolve on a regular carte-
sian grid according to simple streaming and collide rules, designed in such a way as to
preserve the basic symmetries (conservation laws) of fluid dynamics. This method pos-
sesses some advantages over conventional CFD methods, such as the simplicity of the
stream-and-collide dynamics that makes LB very efficient from the computational point
of view, its amenability to parallel computing, its ease in handling complex flows and
the physical implementation of complex boundary conditions. However, the essential
restriction of the standard LBE to the lattice uniformity, which makes it macroscopically
similar to a uniform Cartesian-grid solver, represents a severe limitation for many practi-
cal engineering problems. Therefore, in the recent years, much research has been directed
to the goal of enhancing the geometrical flexibility of the LB method [3, 4, 15, 27].

Considering that for many practical problems an irregular grid or a meshless struc-
ture is always preferable due to the fact that curved boundaries can be described more
accurately, and that computational resources can be used more efficiently, our recent
effort is to extend the LBM order of accuracy and flexibility so that its spatial resolu-
tion requirements for various flow situations may be reduced and may be adapted to
more general meshes. Indeed, starting from the earliest finite-volume formulations more
than a decade ago [3], today many options are available to deal with realistically com-
plex geometries [5–8]. A particularly interesting development is represented by finite-
volume formulations on fully unstructured grids [9–11] which were recently extended
to 3D grids [12]. The Unstructured Lattice Boltzmann schemes (ULBE for short) inte-
grates the differential form of the Lattice Boltzmann equation (LBE) using a cell-vertex
finite-volume technique in which the unknown fields are placed at the nodes of the mesh
and evolve based on the fluxes crossing the surfaces of the corresponding control vol-
umes. These finite-volume formulations are best viewed as a coarse-grained version of
the original LB dynamics, in which geometrical flexibility is achieved at the level of the
coarse-graining elements, whose triangular (in two dimensions) or tetrahedral (in three
dimensions) shapes can accommodate the most complex geometries. Even if the ULBE
method is less efficient than the standard LBE in updating the single node, computational
savings are expected whenever the number of grid nodes can be reduced by, say, an or-
der of magnitude as compared to cartesian grids. Whether or not such a reduction can be
achieved depends of course on the geometrical complexity of the problem at hand, but
it is reasonable to expect that for highly complex geometries ULBE should indeed gain a
significant potential.

Nevertheless, the standard ULBE scheme suffers of the significant limitation ∆t <2τ
which implies an adverse scaling of the time-step with the inverse Reynolds number
[11, 12]. In order to overcome the above mentioned stability limit a new scheme, called
ULBE with memory (ULBEM for short), has been developed [23] by introducing a 2nd or-
der term on the continuous lattice Boltzmann equation to be numerically solved through
a finite volume approach. This generalised formulation of the continuous lattice Boltz-
mann equation achieves better numerical stability and higher numerical accuracy, while
maintaining almost the same computational costs of the standard ULBE scheme. In this


