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Abstract. We construct a numerical scheme based on the Liouville equation of geo-
metric optics coupled with the Geometric Theory of Diffraction (GTD) to simulate the
high frequency linear waves diffracted by a half plane. We first introduce a condition,
based on the GTD theory, at the vertex of the half plane to account for the diffractions,
and then build in this condition as well as the reflection boundary condition into the
numerical flux of the geometrical optics Liouville equation. Numerical experiments
are used to verify the validity and accuracy of this new Eulerian numerical method
which is able to capture the moments of high frequency and diffracted waves without
fully resolving the high frequency numerically.
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1 Introduction

In this paper, we construct a numerical scheme for the high frequency wave equation in
two-dimension:

utt−c(x)2∆u=0, t>0, (1.1)

u(0)= A(x,0)eiφ(x,0)/ǫ, (1.2)

∂u

∂t
(0)= B(x,0)eiφ(x,0)/ǫ, (1.3)
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here c(x) is the local wave speed and ǫ ≪ 1. When the essential frequencies in the wave
field are relatively high, and thus the wavelength is short compared to the size of the
computational domain, direct simulation of the standard wave equation will be very
costly, and approximate models for wave propagation based on geometric optics (GO)
are usually used [9, 12].

We are concerned with the case when there are some wedges in the computational
domain, i.e. the tips and discontinuity in the boundary. When waves hit the wedges,
there will be reflections and diffractions.

One of the approximate models for high frequency wave equation is the Liouville
equation, which arises in phase space description of geometric optics (GO) [9, 32]:

ft+Hv ·∇x f −Hx ·∇v f =0, t>0, x,v∈Rd, (1.4)

where the Hamiltonian H possesses the form

H(x,v)= c(x)|v|= c(x)
√

v2
1+v2

2+···+v2
d, (1.5)

f (t,x,v) is the energy density distribution of particles depending on position x, time t
and slowness vector v.

The bicharacteristics of this Liouville equation (1.4) satisfies the Hamiltonian systems:

dx

dt
= c(x)

v

|v| ,
dv

dt
=−cx|v|. (1.6)

The derivation of GO does not take into account the effects of geometry of the domain and
boundary conditions, which give rise to GO solutions that are discontinuous. Diffractions
are lost in the infinite frequency approximation such as the Liouville equation. In this
case, correction terms can be derived, as done in Geometric Theory of Diffraction (GTD) by
Keller in [25]. GTD provides a systematic technique for adding diffraction effects to the
GO approximations.

The methods for computing the GO solution can be divided into Lagrangian and
Eulerian methods.

Lagrangian methods are based on the ODEs (1.6). The simplest Lagrangian method
is the ray tracing method where the ODEs in (1.6) together with ODEs for the amplitude
are solved directly with numerical methods for ODEs. This approach is very popular in
standard free space GO, [6], and the diffractions, [2, 8]. The ray tracing method gives the
phase and amplitude of a wave along a ray tube, and interpolation must be applied to
obtain those quantities everywhere when rays diverge. Such interpolations can be very
complicated for diverging rays.

In the last decade, Eulerian methods based on PDEs have been proposed to avoid
some of the drawbacks of the ray tracing method [1]. Eulerian methods discretize the
PDEs on fixed computational grids to control errors everywhere and there is no need for
interpolation. The simplest Eulerian methods solves the eikonal and transport equations


