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Abstract. In this paper, we present a generalized Peierls-Nabarro model for curved
dislocations using the discrete Fourier transform. In our model, the total energy is ex-
pressed in terms of the disregistry at the discrete lattice sites on the slip plane, and the
elastic energy is obtained efficiently within the continuum framework using the dis-
crete Fourier transform. Our model directly incorporates into the total energy both the
Peierls energy for the motion of straight dislocations and the second Peierls energy for
kink migration. The discreteness in both the elastic energy and the misfit energy, the
full long-range elastic interaction for curved dislocations, and the changes of core and
kink profiles with respect to the location of the dislocation or the kink are all included
in our model. The model is presented for crystals with simple cubic lattice. Simula-
tion results on the dislocation structure, Peierls energies and Peierls stresses of both
straight and kinked dislocations are reported. These results qualitatively agree with
those from experiments and atomistic simulations.
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1 Introduction

Dislocations are one-dimensional topological defects in crystalline solids, whose motion
is directly responsible for the plastic deformation of these materials [1]. When a straight
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dislocation moves in its slip plane over the crystal lattice, its energy changes periodi-
cally, and an energy barrier has to be overcome when it moves from one energy valley
to another. This energy barrier is referred to as the Peierls energy, and the minimum
stress to drive the dislocation over this energy barrier is the Peierls stress [1–4]. In real-
ity, due to thermal fluctuations and other effects, a dislocation line may lie in different
Peierls valleys connected by kinks, and the motion of the dislocation is also controlled
by the kink nucleation and migration. The energy barrier and the minimum stress to
move an individual kink are the second Peierls energy and the second Peierls stress, re-
spectively [1, 5–12]. These Peierls energies and Peierls stresses play important roles in
characterizing the mobility of dislocation lines [1–16, 18–30].

The Peierls energy and Peierls stress can be estimated using the Peierls-Nabarro model
[1–4], which is a hybrid model incorporating atomic features into continuum framework.
In the Peierls-Nabarro model, the solid is divided by the slip plane of the dislocation into
two half-space linear elastic continua, which have a disregistry (or misfit) relative to each
other and are connected by a nonlinear potential force. The total energy consists of the
elastic energy in the two half-space continua and the misfit energy due to the nonlinear
atomic interaction across the slip plane. The minimum energy state gives the dislocation
core profile on the slip plane. The change of the energy as the dislocation moves over
the crystal lattice is obtained by shifting rigidly the continuous dislocation profile and
summing the misfit energy over the discrete lattice sites near the slip plane. The Peierls
energy is the difference between the maximum and minimum of this discrete summation
of misfit energy, and the Peierls stress is associated with the maximum derivative of this
discrete summation of misfit energy.

The estimates of the Peierls energy and Peierls stress within the Peierls-Nabarro model
give qualitative descriptions for the energy barrier and minimum stress required when
the dislocations move over the crystal lattice, and agree reasonably with the experimental
results [1–4, 14–16]. The Peierls-Nabarro model has been improved greatly with the gen-
eralized stacking fault energy [17] obtained using ab initio calculations [18–23]. However,
in most of these models, the estimates of the Peierls energy and Peierls stress are still
obtained in the same way as those in the classical Peierls-Nabarro model, which has been
criticized for the following limitations [20, 25]. The first limitation is the inconsistency in
the incorporation of the lattice discreteness: on one hand, the continuous dislocation core
profile is obtained from energy minimization, on the other hand, discrete sum is used to
calculate the Peierls energy; i.e., the Peierls energy is not directly included in the energy
minimization. Another limitation is that only the discreteness of the misfit energy is con-
sidered, while the discreteness of the elastic energy is neglected. Finally, this method is
based on the assumption that the dislocation core profile does not change as it moves.
It has been shown that these limitations may result in large errors especially in dealing
with dislocations with narrow cores (e.g. in silicon) [20, 25].

Several efforts have been made to address these problems. Bulatov and Kaxiras pro-
posed a semidiscrete variational Peierls framework [20], in which the total energy is min-
imized with respect to the disregistry at discrete lattice sites and the elastic energy is still


