An Iterative Domain Decomposition Algorithm for the Grad(div) Operator

E. Ahusborde¹, M. Azaïez¹, M. O. Deville² and E. H. Mund^{3,*}

Received 16 July 2007; Accepted (in revised version) 8 January 2008

Available online 1 August 2008

Abstract. This paper describes an iterative solution technique for partial differential equations involving the **grad**(div) operator, based on a domain decomposition. Iterations are performed to solve the solution on the interface. We identify the transmission relationships through the interface. We relate the approach to a Steklov-Poincaré operator, and we illustrate the performance of technique through some numerical experiments.

AMS subject classifications: 65N55, 65F10

Key words: Domain decomposition, **grad**(div) operator, stable approximation, iterative substructuring method, Steklov-Poincaré operator.

1 Introduction

The purpose of this paper is to take benefit of recent advances in the use of spectral methods for the stable approximation of the **grad**(div) operator in tensorised Cartesian domains to solve a large class of problems involving this operator in more sophisticated domains that can be viewed as unions of tensorised Cartesian domains [2]. More precisely, we want to solve the symmetric linear elliptic boundary value problem: *for a given data f, find* **u** *solution to*

$$-\nabla(\nabla \cdot \mathbf{u}) + \alpha^2 \mathbf{u} = \mathbf{f}, \quad \text{in } \Omega, \tag{1.1}$$

$$\mathbf{u} \cdot \mathbf{n} = 0, \qquad \text{on } \partial \Omega, \tag{1.2}$$

¹ TREFLE, (UMR CNRS 8505), Ecole Nationale Supérieure de Chimie et de Physique de Bordeaux, Pessac, France.

² Laboratory of Computational Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.

³ Unité de Thermodynamique, UCL, 1348 Louvain-La-Neuve, Belgium.

^{*}Corresponding author. *Email addresses:* ahusborde@enscpb.fr (E. Ahusborde), azaiez@enscpb.fr (M. Azaïez), Michel.Deville@epfl.ch (M. O. Deville), emund@ulb.ac.be (E. H. Mund)

by a domain decomposition technique using an iterative algorithm between sub-domains in the spirit of the well-known Dirichlet-Neumann algorithm introduced for the Laplacian operator by Quarteroni (see [5] and the references therein). Here, and in the rest of the paper, $\Omega \subset \mathbb{R}^2$ is a bounded open domain with Lipschitzian border and \mathbf{n} denotes the outer unit normal along the boundary. The constant α is given arbitrarily.

The first question we address in Section 2 is the identification of transmission conditions for the vector operator, on the 'skeleton' of the decomposition, that is on the interface between adjacent sub-domains. This is followed in Section 2.1 by the formulation of an iterative substructuring algorithm. In Sections 2.2 and 2.3 we relate the ensuing problem on the skeleton to a Steklov-Poincaré operator and we give some numerical results. Finally Section 3 concludes the paper.

2 A domain decomposition for the grad(div) operator

We assume that the domain Ω is partitioned into a set of non-overlapping and conforming sub-domains Ω_i , $i=1\cdots$, I (see [3]) and for simplicity we assume I=2. Let $\overline{\Gamma}:=\overline{\Omega_1}\cap\overline{\Omega_2}$ denote the interface between the two sub-domains considered in our analysis and shown on Fig. 1. Γ will be called the skeleton of the decomposition in the sequel of the paper. We shall also assume that Γ is a Lipschitz one-dimensional manifold.

We call \mathbf{u}_i the restriction to sub-domain Ω_i , i = 1,2, of the solution \mathbf{u} to the problem (1.1)-(1.2), and by \mathbf{n}_i the outward oriented normal vector on $\partial \Omega_i \cap \Gamma$. For convenience we will set $\mathbf{n} = \mathbf{n}_1$.

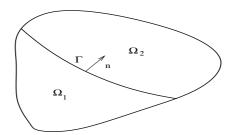


Figure 1: Non-overlapping partition of the domain Ω into two sub-domains.

One can easily prove that the problem (1.1)-(1.2) can be reformulated into the equivalent multi-domain set of local coupled problems (see [5]):

$$-\nabla(\nabla \cdot \mathbf{u}_1) + \alpha^2 \mathbf{u}_1 = \mathbf{f}, \quad \text{in } \Omega_1, \tag{2.1}$$

$$-\nabla(\nabla \cdot \mathbf{u}_2) + \alpha^2 \mathbf{u}_2 = \mathbf{f}, \quad \text{in } \Omega_2, \tag{2.2}$$

$$\mathbf{u}_1 \cdot \mathbf{n} = 0,$$
 on $\partial \Omega_1 \cap \partial \Omega$, (2.3)

$$\mathbf{u}_2 \cdot \mathbf{n} = 0,$$
 on $\partial \Omega_2 \cap \partial \Omega$, (2.4)

$$\mathbf{u}_1 \cdot \mathbf{n} = \mathbf{u}_2 \cdot \mathbf{n}, \quad \text{on } \Gamma,$$
 (2.5)

$$\operatorname{div}\mathbf{u}_1 = \operatorname{div}\mathbf{u}_2, \qquad \text{on } \Gamma. \tag{2.6}$$