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Abstract. The derivation of the quantum lattice Boltzmann model is reviewed with
special emphasis on recent developments of the model, namely, the extension to a
multi-dimensional formulation and the application to the computation of the ground
state of the Gross-Pitaevskii equation (GPE). Numerical results for the linear and non-
linear Schrödinger equation and for the ground state solution of the GPE are also
presented and validated against analytical results or other classical schemes such as
Crank-Nicholson.

PACS: 02.70.-c, 03.65-w, 03.67.Lx

Key words: Quantum lattice Boltzmann, multi-dimensions, imaginary-time model, linear and
non-linear Schrödinger equation, adiabatic limit.

Contents

1 Introduction 981
2 Formal parallel between LBE and Dirac equation 982
3 Quantum lattice Boltzmann equation 985
4 One-dimensional quantum lattice Boltzmann model 986
5 Extension to two and three spatial dimensions 987
6 Adding a potential to the qLB model 989
7 Imaginary-time quantum lattice Boltzmann model 990

†Dedicated to Professor Xiantu He on the occasion of his 70th birthday.
∗Corresponding author. Email addresses: palpacel@mat.uniroma3.it (S. Palpacelli), succi@iac.rm.cnr.it
(S. Succi)

http://www.global-sci.com/ 980 c©2008 Global-Science Press



S. Palpacelli and S. Succi / Commun. Comput. Phys., 4 (2008), pp. 980-1007 981

8 Numerical results 993

9 Conclusions and outlook 1005

1 Introduction

Lattice Boltzmann models (LBMs) have become a competitive numerical tool for simu-
lating fluid flows over a wide range of complex physical problems [1–7]. LBMs were
initially derived from lattice gas cellular automata (LGCA). The basic idea of LGCA is
to simulate the macroscopic behavior of a fluid flow by implementing an extremely sim-
plified model of the microscopic interactions between particles. LBMs were developed,
starting from LGCA, in the attempt to overcome their major drawbacks: statistical noise,
increasing complexity of the collision operator (for three dimensional problems) and high
viscosity (due to small number of collisions) [1–3]. Nowadays, LBM has consolidated into
a powerful alternative to more classical computational fluid dynamics models based on
the discretization of the Navier-Stokes equations of continuum mechanics.

However, LBM and, in general, the lattice kinetic approach has been mostly used with
classical (non-quantum) fluid. Nonetheless, with the theorization of quantum computers,
some authors have extended the lattice kinetic approach to quantum mechanics [8–16].
In fact, as it was first suggested by Feynman [17], the most natural application of quan-
tum computers would be quantum mechanics [18]. The lattice kinetic approach is very
interesting in this respect, because it was shown that the so-called quantum lattice gas
cellular automata (QLGCA) [11] can be used to simulate systems of nonrelativistic quan-
tum particles with exponential speedup in the number of particles [8].

Besides their hypothetical and future application to quantum computing , these lattice
kinetic methods for quantum mechanics are interesting numerical schemes, which can be
implemented on classical computers retaining the usual attractive features of LGCA and
LBM: simplicity, computational speed, straightforward parallel implementation.

In this paper, we will focus on the so-called quantum lattice Boltzmann (qLB) model
proposed by Succi and Benzi [16,19]. The qLB model was initially derived from a formal
parallel between the kinetic lattice Boltzmann equation (LBE) and the relativistic Dirac
equation. It was then shown that the non-relativistic Schrödinger equation ensues from
the Dirac equation under an adiabatic assumption that is formally similar to the one
which takes the Boltzmann equation to the Navier-Stokes equations in kinetic theory [16].

The basic idea of the qLB model is to associate the wave functions composing the
Dirac quadrispinor with the discrete distribution functions of the LBE. In one spatial di-
mension, this analogy is natural and the quadrispinor components can be assimilated to
quantum particles of different types propagating with velocities ±c and colliding when
they meet at the same space-time location. However, in multi-dimensional formulation,
the analogy is no longer straightforward. This is mainly due to the fact that the Dirac
streaming operator is not diagonal along all the spatial directions (i.e., Dirac matrices
can not be simultaneously diagonalized). We could roughly say that, unlike classical


