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Abstract. In this paper we study numerical issues related to the Schrödinger equation
with sinusoidal potentials at infinity. An exact absorbing boundary condition in a form
of Dirichlet-to-Neumann mapping is derived. This boundary condition is based on an
analytical expression of the logarithmic derivative of the Floquet solution to Mathieu’s
equation, which is completely new to the author’s knowledge. The implementation
of this exact boundary condition is discussed, and a fast evaluation method is used to
reduce the computation burden arising from the involved half-order derivative opera-
tor. Some numerical tests are given to show the performance of the proposed absorbing
boundary conditions.
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1 Introduction

Wave propagation is usually modeled by partial differential equations on unbounded do-
mains. For a practical numerical treatment, however, the equations need to be confined
to a bounded computational domain in a neighborhood of the region of physical inter-
est. This can be achieved by introducing artificial boundaries, which then necessitates
imposing boundary conditions. The ideal boundary conditions should not only present
well-posed problems, but also mimic the perfect absorption of waves traveling out of
the computational domain through the artificial boundaries. Right in this context, these
boundary conditions are usually called absorbing (or transparent, non-reflecting in the
same spirit) in the literature.
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Absorbing boundary condition for the Schrödinger equation and related problems
has been a hot research topic for many years. From one-dimensional [2, 3, 6, 7, 10, 12, 15,
19–22, 24, 26] to high-dimensional [5, 8, 11, 13, 18, 23, 28], from linear to nonlinear [4, 14,
25, 27, 29], many developments have been made on the designing and implementing of
various absorbing boundary conditions. In this paper we will consider the Schrödinger
equation of the form

iut+uxx =V(x)u, x∈R, (1.1)

u(x,0)=u0(x), x∈R, (1.2)

u(x,t)→0, x→±∞. (1.3)

The initial function u0 is assumed to be compactly supported in an interval [xL,xR], with
xL < xR, and the real potential function V is supposed to be sinusoidal on (−∞,xL] and
[xR,+∞). More precisely, we assume

V(x)=VL+2qL cos
2π(xL−x)

SL
, ∀x∈ (−∞,xL],

V(x)=VR+2qR cos
2π(x−xR)

SR
, ∀x∈ [xR,+∞),

where SL and SR are the periods, VL and VR are the average potentials, and the non-
negative numbers qL and qR relate to the amplitudes of sinusoidal part of the potential
function V on (−∞,xL] and [xR,+∞), respectively.

The Schrödinger equation with periodic potentials has wide applications in quantum
mechanics and solid physics. For example, it can be used to model electrons immersed
in optical lattices, or simulate quantum dots embedded in crystals. The problem (1.1)-
(1.3) is linear, and the tool of Laplace transform is thus applicable. Formally an exact
relation can be built at each boundary point. This relation expresses a convolution, with
its kernel defined by the inverse Laplace transform of the logarithmic derivative of the
Floquet solution to Mathieu’s equation. However, if the property of this kernel is not
fully explored, this formal exact relation has little practical use. Recently, Galicher [16]
considered the same problem but with a general periodic potential. Formally he set up at
each artificial boundary point an exact Dirichlet-to-Dirichlet mapping, which is nonlocal
in both time and space.

The organization of the rest is as follows. In Section 2, we conjecture an elegant an-
alytical expression of the logarithmic derivative of the Floquet solution. Based on this
expression, an exact absorbing boundary condition in a form of Dirichlet-to-Neumann
mapping is presented in Section 3. The related numerical issues are discussed in Section
4. A fast evaluation method is employed to reduce the computation burden arising from
the convolution operations. Some numerical tests are given in Section 5 to demonstrate
the performance of our absorbing boundary condition. The results show that highly ac-
curate numerical solutions can be computed. We conclude this paper in Section 6.


