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Abstract. Ultra-parallel flow simulations on hundreds of thousands of processors re-
quire new multi-level domain decomposition methods. Here we present such a new
two-level method that has features both of discontinuous and continuous Galerkin
formulations. Specifically, at the coarse level the domain is subdivided into several
big patches and within each patch a spectral element discretization (fine level) is em-
ployed. New interface conditions for the Navier-Stokes equations are developed to
connect the patches, relaxing the C0 continuity and minimizing data transfer at the
patch interface. We perform several 3D flow simulations of a benchmark problem and
of arterial flows to evaluate the performance of the new method and investigate its
accuracy.
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1 Introduction

Current and projected advances in computer architectures involving hundreds of thou-
sands of processors cannot be exploited for large-scale simulations of the human arterial
tree [1, 2] (or of many other physical and biological problems) based on existing domain
decomposition algorithms and corresponding parallel paradigms. Not only we have to
address the tremendous complexity associated with data transfer amongst thousands
of processors, but more fundamentally the solution of linear systems with billions de-
grees of freedom (DOFs) and corresponding condition number exceeding one million is
a rather formidable task.

In this paper we develop a significant extension of the spectral/hp element method
(SEM) for large-scale simulation of arterial blood flow dynamics. In particular, we adopt
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two levels of discretization by introducing coarse-level patches to decompose the compu-
tational domain. SEM, similarly to finite element method, is based on discretization of the
computational domain into non-overlapping elements. Within each element the solution
is approximated with a high-order (spectral) polynomial expansion. The total number of
DOFs depends on the number of elements and the order of polynomial expansion within
each element. The two common approaches for solution of partial differential equations
with SEM are [3]: (a) Discontinuous Galerkin method (DG), where discontinuity of the
numerical solution at the interfaces of elements is allowed; and (b) Continuous Galerkin
method, where the boundary degrees of freedom defined at the interfaces of elements
are shared, hence enforces C0 continuity of the numerical solution. In the C0 approxi-
mation global linear operators are constructed from the local ones by static condensation
and due to sharing of the boundary degrees of freedom the rank of the global operator is
lower than the total number of local DOFs.

In 3D large-scale simulations, the number of spectral elements can be well over a mil-
lion, and due to the high-order polynomial expansion the number of DOFs may be over
several billions. For example, the aorta domain in Fig. 1 has 325,795 tetrahedral elements
and includes only 17 arteries while a domain to discretize 65 major cranial arteries [4]
has 459,250 tetrahedral elements. To resolve the complex patterns of unsteady blood
flow such as secondary flows, turbulence and recirculation, high-order spatial resolution
is required. Hence, in the aorta domain employing sixth-order polynomial expansions
leads to 187,657,920 number of unknowns per variable§ while in the cranial domain it
leads to 264,528,000 number of unknowns. In bigger domains with 10 millions elements
and sixth-order polynomial approximation the number of unknowns for each variable
would be 5.76 billions or more than 20 billions DOFs for all four variables (3D velocity
vector plus pressure).

This large number of unknowns leads to construction of a global linear operator ma-
trix with very high rank and consequently with very large condition number. Decoupling
of the interior degrees of freedom by applying Schur decomposition leads to reduction in
the size of the linear operator that must be inverted, however, the rank of the Schur com-
plement is still very large. In the current study we use the parallel solver NEKTAR [5],
which employs a Preconditioned Conjugate Gradient (PCG) algorithm to solve the four
linear systems for the velocity and pressure. Among the different preconditioners we
have tested for parallel computations, the so-called Low Energy Basis Preconditioner
(LEBP) [6–8] is the most effective. In Fig. 2 we plot the performance of NEKTAR (using
LEBP) on the CRAY XT3 for a simulation involving 120,813 elements. The scaling is fa-
vorable for high-order polynomial approximation. In the parallel LEBP the coarse linear
vertex preconditioner is implemented in two steps: In the first step, the global operator
constructed from the linear (vertex) modes, which are shared by different partitions, is
constructed and inverted in parallel. In the second step, the local operator constructed
from linear modes within each partition is inverted. The size of the global operator is

§Here we define the number of unknowns as the number of quadrature points required for exact integration
of the linear terms in the Navier-Stokes equation.


