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Abstract. Local Discontinuous Galerkin (LDG) schemes in the sense of [5] are a flex-
ible numerical tool to approximate solutions of nonlinear convection problems with
complicated dissipative terms. Such terms frequently appear in evolution equations
which describe the dynamics of phase changes in e.g. liquid-vapour mixtures or in
elastic solids. We report on results for one-dimensional model problems with dissipa-
tive terms including third-order and convolution operators. Cell entropy inequalities
and L2-stability results are proved for those model problems. As is common in phase
transition theory the solution structure sensitively depends on the coupling parameter
between viscosity and capillarity. To avoid spurious solutions due to the counteracting
effect of artificial dissipation by the numerical flux and the actual dissipation terms we
introduce Tadmors’ entropy conservative fluxes. Various numerical experiments un-
derline the reliability of our approach and also illustrate interesting and (partly) new
phase transition phenomena.
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1 Introduction

As a basic model problem we consider the initial value problem

uε
t + f (uε)x = Rε[uε] in ΩT :=R×(0,T), T >0, (1.1)

uε(.,0)=u0 in R. (1.2)
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Here, for ε > 0, the unknown function is uε : R×[0,T)→R. By f ∈ C1(R,R) we denote
the given flux function and by u0∈L∞(R)∩L1(R) the initial function. Let us assume that
(1.1)-(1.2) is uniquely solvable in an appropriate function space where Rε is a dissipative
operator acting on this space. Specific examples are given below.

We are interested in choices of Rε such that

lim
ε→0

Rε[w]≡0 (1.3)

holds for all functions w:R→R in the function space at hand in the sense of distributions.
Then (1.1) turns in the limit ε→0 into the hyperbolic equation

ut+ f (u)x =0 in ΩT. (1.4)

Solutions of initial value problems for (1.4) might contain discontinuous shock waves so
that one has to consider weak solutions which, however, are not uniquely determined.
In this framework it is natural to enforce uniqueness by selecting the admissible weak
solution for (1.4) as the function u :R×[0,T)→R with

lim
ε→0

‖uε−u‖L
p
loc(ΩT) =0, (1.5)

provided the latter limit exists for some p≥1 and u is a weak solution of (1.4).

For small but positive ε >0 in (1.1) it is a challenge to solve the initial value problem
numerically since then the solution is governed by the behaviour of the limit problem and
can contain steep internal layers. Additionally the numerical entropy dissipation has to
be tuned very carefully since the limit (1.5) can sensitively depend on the structure of Rε

as we shall detail below. The Local Discontinuous Galerkin (LDG)-scheme provides an
elegant and flexible tool to treat quite general versions of (1.1), in particular the (formal)
order of the method can be chosen without restrictions. The approach has been originally
introduced in [5] for diffusion operators and since then has been applied to many other
evolution equations so that we only refer to the overview publications [2, 3]. The LDG-
approach relies on a reformulation of (1.1) as a degenerate first-order system and the
discretization of this system by the (classical) Discontinuous-Galerkin method (cf. [4]) for
first-order systems. We note also that the LDG-scheme requires to use numerical flux
functions to discretize the term f (uε)x and the dissipative fluxes that come out of Rε in
(1.1).

In this paper we test the LDG-scheme for complex choices for Rε which have been
recently suggested as models for phase transition phenomena. We are interested in cases
where the limit in (1.5) exists but leads to non-standard weak solutions (i.e., weak solu-
tions which not necessarily are Kruzkov-solutions) of (1.4).

A well analyzed choice for Rε in (1.1) such that u from (1.5) exists is

Rε[w]= εwxx, w∈C2(R). (1.6)


