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Abstract. A distributed Lagrangian moving-mesh finite element method is applied to
problems involving changes of phase. The algorithm uses a distributed conservation
principle to determine nodal mesh velocities, which are then used to move the nodes.
The nodal values are obtained from an ALE (Arbitrary Lagrangian-Eulerian) equa-
tion, which represents a generalization of the original algorithm presented in Applied
Numerical Mathematics, 54:450–469 (2005). Having described the details of the gener-
alized algorithm it is validated on two test cases from the original paper and is then
applied to one-phase and, for the first time, two-phase Stefan problems in one and two
space dimensions, paying particular attention to the implementation of the interface
boundary conditions. Results are presented to demonstrate the accuracy and the ef-
fectiveness of the method, including comparisons against analytical solutions where
available.
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1 Introduction

Moving-mesh methods have been used for the solution of partial differential equations
(PDEs) in recent years in various ways. The motivation is usually to improve the res-
olution of solutions [4, 14, 17, 19, 20, 29, 38], to track special features of a solution (such
as shocks, singularities and moving boundaries) [2, 5–7, 10, 18, 30–33, 42–44], and/or to
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exploit geometric properties such as scale-invariance, orderings or asymptotics [8,12,15].
The moving-mesh methods can be divided into two broad categories: those based on
mappings between a fixed computational mesh and physical space [10, 16, 17, 38] and
those based on velocities expressed in terms of the mesh coordinates in physical space
[6, 12, 18–20, 34]. In this paper we focus on one particular velocity-based moving-mesh
finite element method [6–8], which is related to the Geometric Conservation Law [18,40].
This method has been successfully applied to a range of time-dependent nonlinear PDE
problems involving singularities and implicit moving boundaries: however, since its
original introduction in [6], a number of improvements have been made which are in-
corporated into the description below.

The algorithm has been designed to be very general in nature and applicable to a large
family of problems. Having validated the proposed method for a range of situations, the
main thrust of this paper is its application, for the first time, to phase-change problems
involving an internal moving boundary. Many numerical schemes have been applied
to such problems, including those involving moving-mesh techniques [10, 25, 26, 33, 39].
The application of the moving-mesh finite element method described in this paper to this
problem is however new, and is shown to be both accurate and robust.

The layout of the paper is as follows. Section 2 gives a description of the moving-
mesh finite element method of [6] incorporating a number of recent developments. Sec-
tion 3.1 presents validating results from a mass-conserving problem using the porous
medium equation [41], which is a second order nonlinear diffusion equation for which
simple self-similar solutions exist with finite support that grows with time. Section 3.2
then describes validating results from a non-mass-conserving implicit moving boundary
problem, a simple model of absorption and diffusion, referred to here as the Crank-Gupta
problem [24], which contains a sink term which causes the finite support to shrink with
time. Section 4 contains the main application of the moving-mesh finite element method
to one-phase and two-phase Stefan problems and Section 5 contains details of the re-
sults of numerical experiments, validated against analytic solutions whenever possible.
Finally, Section 6 includes a discussion of points raised in the paper.

2 A moving-mesh finite element method

In this section we present a derivation of the equations used by the moving-mesh finite
element method to find mesh velocity potentials which are subsequently used to define
the nodal velocities. This is followed by a summary of the complete algorithm, as used
in this paper, and the enhancements which have been made since its original publication
in [6].

2.1 A mesh movement velocity potential

Let u(x,t) be the solution of a well-posed time-dependent nonlinear PDE problem of
general form


