
COMMUNICATIONS IN COMPUTATIONAL PHYSICS
Vol. 5, No. 5, pp. 928-941

Commun. Comput. Phys.
May 2009

Numerical Investigation on the Boundary Conditions

for the Multiscale Base Functions

Shan Jiang1 and Yunqing Huang2,∗

1 Department of Mathematics, Xiangtan University, Xiangtan 411105, China.
2 Hunan Key Laboratory for Computation and Simulation in Science and
Engineering, Institute for Computational and Applied Mathematics, Xiangtan
University, Xiangtan 411105, China.

Received 26 May 2007; Accepted (in revised version) 27 June 2008

Communicated by Pingwen Zhang

Available online 14 October 2008

Abstract. We study the multiscale finite element method for solving multiscale elliptic
problems with highly oscillating coefficients, which is designed to accurately capture
the large scale behaviors of the solution without resolving the small scale characters.
The key idea is to construct the multiscale base functions in the local partial differential
equation with proper boundary conditions. The boundary conditions are chosen to ex-
tract more accurate boundary information in the local problem. We consider periodic
and non-periodic coefficients with linear and oscillatory boundary conditions for the
base functions. Numerical examples will be provided to demonstrate the effectiveness
of the proposed multiscale finite element method.
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1 Introduction

Many multiscale problems are often described by partial differential equations (PDEs)
with highly oscillating coefficients. In practice, the coefficients may contain many scales
spanning over a great extent [3]. On one hand, the direct use of traditional numeri-
cal methods, such as standard finite element method (FEM) or finite difference method
(FDM), to the multiscale problems is very difficult since the mesh size has to be extremely
small. On the other hand, the main interest is to acquire the large scale solution with accu-
racy instead of finding the small scale characters in detail. The multiscale finite element
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method (MFEM), whose goal is to obtain the large scale solution accurately and effi-
ciently, is to capture large scale information by constructing the multiscale finite element
base functions. This can be achieved by solving the base functions from the local problem
in the elements. With proper boundary conditions, the base functions are adaptive to the
features of the differential operator.

To capture the large scale solutions without resolving the small scale details, Babus̆ka
& Osborn [2] (for one-dimensional problems) and Babus̆ka et al. [1] (for special two-
dimensional problems) presented the generalized finite element method by introducing
modified base functions that are based on the differential operator. Hou & Wu [12] ex-
tended the idea of [1, 2] and proposed the multiscale finite element method by solving
the local homogenization problems for the base functions. Hou et al. [13] and Efendiev
& Wu [8] provided many theoretical analysis and numerical experiments for the MFEM.
Engquist & Luo [9] studied the convergence of the multigrid method for highly oscilla-
tory elliptic problems on a new coarse-grid finite difference scheme. Huang & Xu [14,15]
applied the partition of unity method (PUM) to the multiscale problems with highly os-
cillating coefficients, and proved that the PUM admitted optimal convergence rate with
nonmatching and overlapping grids. In [4], Chen & Cui constructed a special multi-
scale rectangular element space whose base functions consisting of bilinear functions and
bubble-like functions. In [5], Chen & Hou proposed a mixed multiscale finite element
method with an over-sampling technique, which solves the local Neumann boundary
value problem for the bases. Chen & Yue [6] considered the oversampling multiscale fi-
nite element method with a new upscaling technique for resolving the well singularities.
Jenny et al. [16] and He & Ren [11] applied the multiscale finite volume method in sub-
surface flow simulation and for solving the ground-water flow problems, respectively.
Ren & E [19] and Yue & E [20] studied the heterogeneous multiscale method for the mod-
eling of complex fluids with application to two-phase porous media flow. In [17], Ming
& Yue presented an overview of the recent development on the multiscale numerical
methods. Efendiev & Hou [7] discussed the applications of the MFEM to two-phase im-
miscible flow simulation in which limited global information is taken into account, and
the applications to inverse problems are also discussed. Nassehi et al. [18] developed
the MFEM using bubble functions thus obtained stable solutions without excessive mesh
refinement near the wall. In [10], a systematic review to the heterogeneous multiscale
method (HMM), including the fundamental designing philosophy and the error analy-
sis, is presented. Yue & E [21] systematically investigated the issues in the multiscale
modeling, and discussed the mixed Dirichlet-Neumann boundary condition in porous
media.

An advantage of the multiscale finite element method is that it can reduce the size of
computation. For example, let N be the number of elements in each spatial direction, and
let M be the number of subcell elements in each direction for solving the base functions.
Then there are a total of (MN)d (d is the dimension) elements at the fine grid level. For the
FEM, the computer memory required to solve the problem at the fine grid is O(MdNd), in
contrast with the MFEM which requires only O(Md+Nd) amount of memory. Moreover,


