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Abstract. We present an energy absorbing non-reflecting boundary condition of
Clayton-Engquist type for the elastic wave equation together with a discretization
which is stable for any ratio of compressional to shear wave speed. We prove stability
for a second-order accurate finite-difference discretization of the elastic wave equation
in three space dimensions together with a discretization of the proposed non-reflecting
boundary condition. The stability proof is based on a discrete energy estimate and is
valid for heterogeneous materials. The proof includes all six boundaries of the com-
putational domain where special discretizations are needed at the edges and corners.
The stability proof holds also when a free surface boundary condition is imposed on
some sides of the computational domain.
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1 Introduction

In regional simulations of seismic wave propagation, the extent of the computational
domain must be limited to make the problem computationally tractable. Some form of
far-field absorbing boundary condition needs to be imposed where the computational
domain is truncated such that waves can propagate out of the computational domain
without being reflected due to the artificial boundary. For a material with constant wave
speeds, and a domain with a single planar boundary, it is possible to derive a bound-
ary condition which allows all waves to exit the domain without any artificial reflec-
tion. However, such a boundary condition involves a pseudo-differential operator and is
therefore non-local in space and unsuitable for numerical computations.
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One of the first practically useful far-field boundary condition for the elastic wave
equation was derived by Clayton and Engquist [4], where the authors presented a hierar-
chy of boundary conditions by approximating the exact pseudo-differential operator to
increasing order of accuracy in the angle of incidence. (All boundary conditions in the
hierarchy are perfectly non-reflecting for waves of normal incidence.) A slightly different
approach was suggested by Higdon in [9], where the boundary condition is obtained by
component wise application of a scalar non-reflecting boundary condition. Higdon also
derived a hierarchy of boundary conditions with increasingly absorbing properties. In
the case of a scalar wave equation, the Higdon and Clayton-Engquist boundary condi-
tions are equivalent. First order Clayton-Engquist conditions have been used extensively
in large scale computations of seismic wave propagation, see [5]. However, instabilities
have been reported for the third order condition for some values of the wave speeds [12].

The perfectly matched layer (PML) is a more modern boundary condition which was
originally developed for Maxwell’s equations by Berenger [2] and has been studied in
numerous subsequent papers, see for example [16] and the references therein. Perfectly
matched layers have superior non-reflecting properties compared to low order Clayton-
Engquist or Higdon conditions, but they are also more complicated to implement and
require correct tuning of the size and strength of the absorbing layer. PMLs for the elastic
wave equation were developed in [1,10]. Unfortunately, the PML boundary condition can
become unstable when it interacts with surface waves along material discontinuities [17].

Higdon [8] performed a normal-mode stability analysis for a class of discretized non-
reflecting boundary conditions for the elastic wave equation, which includes the first or-
der Clayton-Engquist condition as a special case. In particular, Higdon showed stability
for a first order accurate discretization of the Clayton-Engquist condition. Note that the
normal mode analysis is only valid for half-space problems with homogeneous materials
and does not take corners or edges into account. Furthermore, the stability concept in the
normal mode analysis only guarantees the solution to be bounded independently of the
grid size for a fixed, finite, interval in time. It does not exclude the possibility that the
solution may grow as the time interval is made longer. We remark that the discretization
given in the original paper by Clayton and Engquist [4] is second order accurate and is
therefore not covered by Higdon’s analysis.

In seismic simulations, the material properties are not known very precisely and there
are often uncertainties associated with the source terms modeling the spatial distribu-
tion and temporal variation of the slip during an earthquake. We therefore believe that
in many realistic seismic simulations, adequate accuracy can be obtained by using low
order outflow boundary conditions as long as they are stable. Often the material proper-
ties vary rapidly on the computational grid and this can cause stability problems for the
Clayton-Engquist conditions, which are derived under the assumption of constant coef-
ficients. Additional stability problems occur for large ratios between the compressional
and shear wave speeds: Cp /cs. Here,

cp=1/(2u+A)/p, cs=+/ul/p,



