Commun. Comput. Phys. February 2009

Numerical Calculation of Monotonicity Properties of the Blow-Up Time of NLS

Hans Peter Stimming*

Wolfgang Pauli Institute, c/o Institut für Mathematik, Universität Wien, Botzmanngasse 9, 1090 Wien, Austria.

Received 9 October 2007; Accepted (in revised version) 18 December 2007

Available online 1 August 2008

Abstract. We investigate blow-up of the focusing nonlinear Schrödinger equation, in the critical and supercritical cases. Numerical simulations are performed to examine the dependence of the time at which blow-up occurs on properties of the data or the equation. Three cases are considered: dependence on the scale of the nonlinearity when the initial data are fixed; dependence upon the strength of a quadratic oscillation in the initial data when the equation and the initial profile are fixed; and dependence upon a damping factor when the initial data are fixed. In most of these situations, monotonicity in the evolution of the blow-up time does not occur.

AMS subject classifications: 35Q55, 65M70, 81Q05

Key words: Nonlinear Schrödinger equation, finite time blow-up, wave collapse.

1 Introduction

Finite time blow-up of Nonlinear Schrödinger equations (NLS) is an interesting topic that has drawn much attention. A (by far) non-exhaustive list of important papers on the topic is [10, 15–19, 23], and we refer to [21] for a nice survey of the latest results. As recalled in [21], the main three directions of research in this subject are: giving sufficient conditions to have finite time blow-up in the energy space; estimating the blow-up rate and the stability of the blow-up regimes; describing the spatial structure of the singularity formation.

The question addressed in this paper is to investigate the blow-up time and its possible relations to features of the equation or the data. This point of view differs from much of the other work on the subject of blow-up in the sense that it is not concerned only with properties of the solution "close" to the blow-up, but also needs to take into account parts

http://www.global-sci.com/

^{*}Corresponding author. *Email address:* hans.peter.stimming@univie.ac.at (H. P. Stimming)

of the solution which actually are "far away" (either in space or in time) from the actual blow-up region.

The present paper is an extension of [8], where a detailed study of the relevant analytic results is done in addition to the numerical tests.

Consider the nonlinear Schrödinger equation

$$i\partial_t u + \Delta u = -\lambda |u|^{2\sigma} u, (t,x) \in \mathbb{R}_+ \times \mathbb{R}^n; \quad u_{|t=0} = u_0, \tag{1.1}$$

with a focusing power nonlinearity, where $\lambda, \sigma > 0$. Such an equation arises in nonlinear optics as an envelope equation in the propagation of laser beams (see, e.g., [22]), and also in applications of quantum mechanics, where other terms like confining potentials and coupling to Poisson's equations are usually also a part of the model equation. It is well known that if $\sigma < \frac{2}{n-2}$, then for $u_0 \in H^1(\mathbb{R}^n)$ the equation (1.1) has a unique solution in $H^1(\mathbb{R}^n)$, defined locally in time. In general this solution does not remain in $H^1(\mathbb{R}^n)$ globally in time, when $\sigma \ge \frac{2}{n} = \sigma_{crit}$, finite time blow-up may occur ($\lambda > 0$ means that the nonlinearity is focusing). For proofs of these standard results we refer to the monographs [11,22]. The L^2 -norm or mass of $u(t, \cdot)$ is independent of time, and finite time blow-up means that there exists $T^* < \infty$ such that:

$$\|\nabla_x u(t)\|_{L^2} \to +\infty \text{ as } t \to T^*.$$

In this paper, we investigate by numerical experiments the dependence of the blowup time upon, for instance, a varying coupling constant λ when the initial datum u_0 is fixed. To motivate our study, we recall now some results from [12, 13]. In [12], the authors prove that if the initial datum $u_0(x)$ is replaced by $u_0(x)e^{-ib|x|^2/4}$, then the blowup time of the corresponding new solution u_b can be related explicitly to that of u, in the case of a critical nonlinearity, $\sigma = \frac{2}{n}$. It is a consequence of the conformal invariance. In the super-critical case $\sigma > \frac{2}{n}$, the conformal transform does not leave (1.1) invariant. It is also established that if u has negative energy (in this case, there is finite time blowup at least if $xu_0 \in L^2(\mathbb{R}^n)$ [14]) then *for large b*, blow-up occurs sooner than for b = 0; unlike in the conformally invariant case, one does not know whether the blow-up time is monotonous with respect to b. The numerical experiments we present here show that it is not monotonous with respect to b.

In [13], the author considers the damped cubic Schrödinger equation in space dimension two:

$$i\partial_t \psi + \Delta \psi = -i\delta \psi - |\psi|^{2\sigma} \psi , \ (t,x) \in \mathbb{R}_+ \times \mathbb{R}^2; \quad \psi_{|t=0} = u_0,$$
(1.2)

with $\sigma = 1$. It is conjectured that the blow-up time is monotonous with respect to $\delta > 0$. Our numerical experiments show that this guess is not satisfied. The guess is plausible when one thinks of the initial data u_0 as a single hump, for example a gaussian. In this case the experiments show monotonicity; however when the data u_0 is made of, say, two humps, the intuition goes wrong.

In addition to the linear damping term in (1.2), often also a cubic or quintic nonlinear damping term is considered, for example in BEC modeling. A study of this case is beyond