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Abstract. Stochastic well-stirred chemically reacting systems can be accurately mod-
eled by a continuous-time Markov-chain. The corresponding master equation evolves
the system’s probability density function in time but can only rarely be explicitly solved.
We investigate a numerical solution strategy in the form of a spectral method with an
inherent natural adaptivity and a very favorable choice of basis functions. Theoretical
results related to convergence have been developed previously and are briefly sum-
marized while implementation issues, including how to adapt the basis functions to
follow the solution they represent, are covered in more detail here.
The method is first applied to a model problem where the convergence can easily be
studied. Then we take on two more realistic systems from molecular biology where
stochastic descriptions are often necessary to explain experimental data. The con-
clusion is that, for sufficient accuracy demands and not too high dimensionality, the
method indeed provides an alternative to other methods.

AMS subject classifications: 65M70, 65C40, 60J22, 41A30, 41A63

Key words: Master equation, spectral-Galerkin method, high dimensional problem, moving ba-
sis, chemical reactions.

1 Introduction

Stochastic descriptions of chemical reactions are necessary tools for understanding and
explaining the mechanisms inside living cells. Models of intra-cellular systems frequently
consist of fewer than 102 molecules of some of the species [26] implying that molecule
discreteness makes the impact of stochasticity very pronounced. For instance, random-
ness has been shown to drive and improve the regularity of oscillations [46], create new
steady-states [45] and cause separation in bistable systems [13].
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The chemical master equation (CME) is a popular and accurate stochastic model for
chemically reacting systems. It is a consequence of the Markov property: if the system
is measured at discrete times t1 < t2 < ···tn, then the probability for the measurement
(yn,tn) given the present state (yn−1,tn−1) does not involve earlier states. Typically, be-
cause of the existence of activation energies, reactive collisions between molecules are
rare events as compared to nonreactive ones giving rise to a randomization and a loss of
memory [24]. This loss of memory is then accurately captured by the Markov property
and remains a valid approximation so long as the measurement scale is slower than the
often extremely short auto-correlation time of the system.

The master equation is a differential-difference equation in D dimensions, where D is
the number of reacting agents, and is therefore a very computationally intensive problem.
Effective numerical methods are of both practical and theoretical interest.

Recent progress at directly representing the state-space and solving the CME include
the Finite state projection algorithm [38], later improved using Krylov-subspace methods
[5, 36]. See also [18] where techniques from adaptive PDE-solvers are used in the context
of the CME. For larger state-spaces, numerical solution of the Fokker-Planck equation [19]
and adaption of the Sparse grids technique [29] have been suggested. As a master equation
for continuous stochastic processes, numerical solution of the Fokker-Planck equation is
an interesting subject in itself. There are, however, important cases for which the CME
cannot be approximated by the Fokker-Planck equation [22]. The sparse grids technique
aims to reduce the computational complexity of high dimensional smooth problems. Its
application to the CME is quite recent and appear promising.

In the present paper we implement and apply a spectral method developed previ-
ously in the report [17] to the master equation. The method employs basis functions that
are orthogonal with respect to a discrete measure in line with the discreteness of the so-
lution and avoids the need for continuous approximations to the master operator. An
interesting feature of our implementation is a built-in adaptivity of the basis which al-
lows the basis functions to follow the dynamical behavior of the solution. Our proposed
scheme is reminiscent of an approach for polyreaction kinetics considered earlier in [9],
and we will further comment on this point in Section 5.

The “curse of dimension”, the phenomenon that the complexity of traditional dis-
cretization methods applied to high-dimensional problems grows exponentially with the
problem size is thus not removed, but it is mitigated. With a spectral method that con-
verges exponentially, the resolution per dimension can be much smaller than any direct
representation provided that the solution is smooth enough. As we shall see, another
point in directly attacking the CME is the way stiff equations can be handled through
suitable implicit time integration.

The paper is organized as follows. In Section 2 the master equation as a governing
equation for stochastic chemical systems is discussed along with theoretical properties of
importance to the numerical analysis. The spectral method is proposed in Section 3 where
approximation and stability results developed in the report [17] are summarized. This
section also discusses a plausible implementation in some detail, including the “moving


