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Abstract. Based on an error estimate in terms of element edge vectors on arbitrary
unstructured simplex meshes, we propose a new edge-based anisotropic mesh refine-
ment algorithm. As the mesh adaptation indicator, the error estimate involves only the
gradient of error rather than higher order derivatives. The preferred refinement edge
is chosen to reduce the maximal term in the error estimate. The algorithm is imple-
mented in both two- and three-dimensional cases, and applied to the singular function
interpolation and the elliptic interface problem. The numerical results demonstrate
that the convergence order obtained by using the proposed anisotropic mesh refine-
ment algorithm can be higher than that given by the isotropic one.

AMS subject classifications: 65N22, 65N50, 65N55

Key words: Adaptive finite element method, anisotropic mesh refinement, elliptic interface prob-
lem, non-homogeneous jump, a posteriori error estimate.

1 Introduction

For singular or nearly singular problems, the structures of singularity often exhibit ”low-
dimensional” feature that the solutions vary significantly in some directions but mildly
in other directions. To numerically approximate such solutions efficiently, no doubt
we prefer anisotropic meshes, which are of different length scales in different direc-
tions and fit the anisotropic feature in the solutions. Numerous examples, including
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pervasive layer structures and interface discontinuities, have shown the efficiency of
anisotropic elements in reducing computational cost and improving approximation ac-
curacy [1, 5, 6, 17, 22, 27, 28, 30]. This paper is concerned with the elliptic interface prob-
lem with homogeneous and non-homogeneous jump conditions, which attracts much
interests since it is omnipresent in many scientific and engineering problems, including
multi-phase flows, nano-electronic devices, electromagnetic wave propagation in hetero-
geneous waves, implicit solvent models in structural biology, and biological membrane.
To resolve the layer anisotropy, we develop an anisotropic refinement algorithm which
can be effective not only for the interface problem but also for problems with global
anisotropy.

Compared with isotropic elements, the description of anisotropic meshes needs more
information. Take two-dimensional triangular element as example, its anisotropy can be
measured in two main aspects [8]. One is orientation, which is roughly the direction of
its longest side. The other is the aspect ratio, which measures how thin the triangle is.
The first quantity is supposed to be more crucial to the success of anisotropic element.
Goodman et al. [15] once gave an example showing that a wrong direction may lead to
non-convergence. In the past decades, some important improvement has been made in
numerical analysis of linear interpolation on anisotropic triangular meshes [3, 7, 19, 23].
The main conclusion can be roughly stated as: given the area of a triangular element τ,
the error (in Lp-norm) for the linear interpolation of a function u at the vertices of τ is
nearly the minimum when τ is aligned with the eigenvector (associated with the smaller
eigenvalue) of the Hessian ∇2u, and the aspect ratio (or stretch ratio) of τ is about the
square root of the ratio of the greater eigenvalue of ∇2u to the smaller one. For quadratic
interpolation, the anisotropic orientation depends on ∇3u [8] and higher order interpo-
lation may have similar properties. Based on this analysis, some anisotropic mesh opti-
mization methodologies have been developed [4, 9, 16], which try to minimize the error
by relocating nodes. From a practical point of view, since the solution of the problem is
unknown, a crucial point in these methods is how to approximate high order derivatives
such as ∇2u or ∇3u efficiently and accurately. When the solution is not regular enough,
the accuracy in recovering the high order derivatives can be misleading.

As an effort to overcome the difficulty of requiring high order derivatives, the method
we propose depends on only the first order derivatives of u(uh). For each element with
indicator above the given tolerance, one edge is chosen as the preferred refinement edge.
The affine map from the reference element to the actual element plays an essential role
in anisotropic error analysis. In [11, 12], Formaggia et al. proved that the sum of error
gradient projection onto two principal axes of the affine map is an upper bound of the
element error. We project the error gradient onto the element edges instead to find the
preferred refinement edge. Since the Jacobian matrix of the affine map can be expressed
by edge vectors when we use the unit reference triangle, the sum of error gradient pro-
jection onto the three edges is again an upper bound of the element error. To reduce this
upper bound error estimate, the most efficient mesh adaptation is to refine the edge with
the maximal contribution to the estimate. The algorithm is first validated for the inter-


