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Abstract. Based on a novel numerical flux involving jumps of even order derivatives
of the numerical solution, a direct discontinuous Galerkin (DDG) method for diffusion
problems was introduced in [H. Liu and J. Yan, SIAM J. Numer. Anal. 47(1) (2009),
475-698]. In this work, we show that higher order (k≥4) derivatives in the numerical
flux can be avoided if some interface corrections are included in the weak formulation
of the DDG method; still the jump of 2nd order derivatives is shown to be important
for the method to be efficient with a fixed penalty parameter for all pk elements. The
refined DDG method with such numerical fluxes enjoys the optimal (k+1)th order
of accuracy. The developed method is also extended to solve convection diffusion
problems in both one- and two-dimensional settings. A series of numerical tests are
presented to demonstrate the high order accuracy of the method.
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1 Introduction

This paper is the continuation of our project, initiated in [26], of developing a direct dis-
continuous Galerkin (DDG) method for diffusion problems. Here we focus on the diffu-
sion equation of the form

∂tU−∇·(A(U)∇U)=0, Ω×(0,T), (1.1)

where Ω⊂R
d, the matrix A(U) = (aij(U)) is symmetric and positive definite, and U is

an unknown function of (x,t). The method will also be extended to convection-diffusion
problems and their invariants.
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The Discontinuous Galerkin (DG) method is a finite element method using a com-
pletely discontinuous piecewise polynomial space for the numerical solution and the test
functions. One main advantage of the DG method was the flexibility afforded by local
approximation spaces combined with the suitable design of numerical fluxes crossing
cell interfaces. The application to hyperbolic problems has been quite successful since it
was originally introduced by Reed and Hill [28] in 1973 for neutron transport equations.
A major development of the DG method for nonlinear hyperbolic conservation laws is
carried out by Cockburn, Shu, and collaborators in a series of papers [13, 17, 18, 20]. We
refer to [11, 16, 21] for reviews and further references.

However, the application of the DG method to diffusion problems has been a chal-
lenging task because of the subtle difficulty in defining appropriate numerical fluxes for
diffusion terms, see e.g. [30]. There have been several DG methods suggested in literature
to solve the problem, including the method originally proposed by Bassi and Rebay [4]
for compressible Navier-Stokes equations, its generalization called the local discontinu-
ous Galerkin (LDG) methods introduced in [19] by Cockburn and Shu and further stud-
ied in [6,7,12,15]; as well as the method introduced by Baumann-Oden [5,27]. Also in the
1970s, Galerkin methods for elliptic and parabolic problems using discontinuous finite
elements, called the interior penalty (IP) methods, were independently introduced and
studied; see, e.g., [1,3,34]. We refer to [2] for a unified analysis of DG methods for elliptic
problems and background references for the IP methods.

In this article we are interested in the effect of test functions on interface treatments,
and accordingly we introduce a refined version of the DDG method proposed in [26]. To
illustrate the idea, we consider the scalar one-dimensional diffusion equation

ut =uxx,

and formulate the DDG method based on the direct weak formulation
∫

Ij

utvdx− (̂ux)v
∣∣xj+ 1

2
x

j− 1
2

+
∫

Ij

uxvxdx=0,

where Ij is the j-th computational cell, and v is the test function. In [26] we presented the
following numerical flux

ûx = β0
[u]

∆x
+ux+β1∆x[uxx]+β2(∆x)3[uxxxx]+··· , (1.2)

which involves the average ux and the jumps of even order derivatives of u. This nu-
merical flux satisfies the following desired properties: it (i) is consistent for the smooth
solution u; (ii) is conservative in the sense of its being single valued at the interface; (iii)
ensures the L2-stability; and (iv) enforces the high order accuracy of the method

It was shown in [26] that for piecewise pk polynomial approximations, kth order of
accuracy of the DDG method is ensured if the numerical flux is admissible. Numerical
experiments in [26] also showed that the use of term (∆x)2m−1[∂2m

x u] (m = 0,1,··· ,[ k
2 ]) in


