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Abstract. We investigate problems of fluid structure interaction type and aim for a
formulation that leads to a well posed problem and a stable numerical procedure. Our
first objective is to investigate if the generally accepted formulations of the fluid struc-
ture interaction problem are the only possible ones. Our second objective is to derive
a stable numerical coupling. To accomplish that we will use a weak coupling proce-
dure and employ summation-by-parts operators and penalty terms. We compare the
weak coupling with other common procedures. We also study the effect of high order
accurate schemes. In multiple dimensions this is a formidable task and we start by in-
vestigating the simplest possible model problem available. As a flow model we use the
linearized Euler equations in one dimension and as the structure model we consider a
spring.
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1 Introduction

Fluid structure interaction (FSI) problems occur in many different areas including aerody-
namics [2,4,8], acoustics [3,7,24] and medicine [9,12,14,15]. The specific FSI phenomenon
called aerodynamic flutter is very dangerous and can cause accidents. It deserves atten-
tion in its own right, but it is also an example of a problem where most of the activity is
due to the interaction between two separate physical problems.
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Unless the coupling between these two problems is well posed and stable, either un-
physical growth or damping can occur. (Some formulations try to avoid or decrease
the coupling problem, see, e.g., [10]). The unphysical growth could result in expensive
counter measures while the unphysical damping can provide a false sense of safety. We
will investigate well-posedness and stability in detail and due to the complexity, we will
start in one dimension and focus on the spatial problem.

First we investigate if the generally accepted formulation of the FSI problem is the
only possible one (uniqueness) and such that it does not generate artificial energy growth.
In short we will make sure that the coupling is well posed (see [11] for various concepts
of well-posedness). Next, given that the problem is well posed, we will make sure that
the numerical approximation is accurate and stable. We will study both the linear and
non-linear problem.

The rest of the paper proceeds as follows. In Section 2 we formulate the problem
mathematically. Section 3 deals with the linear problem and well-posedness while the
non-linear problem is discussed in Section 4. In Section 5 we construct stable approxima-
tions for the linear semi-discrete approximation and describe the non-linear approxima-
tion. Section 6 presents the numerical experiments and conclusions are drawn in Section
7.

2 Mathematical formulation

Our model problem is schematically depicted in Fig. 1. The flow part to the left of x1(t)
influence the structural part to the right and vice versa. The governing equations for the
flow problem are the symmetric and linearized Euler equations in one dimension

Ut+AUx =0, 0≤ x≤ x1(t), (2.1)
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In (2.2), ρ, u and T represents the perturbation from the mean value of the density (ρ̄),
velocity (ū) and temperature (T̄) respectively. Furthermore, c̄,M∞ and γ stands for the
speed of sound at reference state, the Mach number at reference state and the ratio of
specific heats. The equation of state is p= c̄2ρ/γ+ ρ̄T/(γM2

∞). For more details on how
to obtain (2.1), (2.2), see [1, 19].

To simplify the analysis we transform equation (2.1) to a fixed domain using ξ =x/x1

and τ = t. We get

x1(τ)Uτ +(A−ξ ẋ1)Uξ =0, 0≤ ξ≤1. (2.3)


