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Abstract. Two fundamental facts of the modern wave turbulence theory are 1) exis-
tence of power energy spectra in k-space, and 2) existence of ”gaps” in this spectra
corresponding to the resonance clustering. Accordingly, three wave turbulent regimes
are singled out: kinetic, described by wave kinetic equations and power energy spec-
tra; discrete, characterized by resonance clustering; and mesoscopic, where both types
of wave field time evolution coexist. In this review paper we present the results on
integrable dynamics of resonance clusters appearing in discrete and mesoscopic wave
turbulent regimes. Using a novel method based on the notion of dynamical invariant
we show that some of the frequently met clusters are integrable in quadratures for ar-
bitrary initial conditions and some others-only for particular initial conditions. We also
identify chaotic behaviour in some cases. Physical implications of the results obtained
are discussed.
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1 Introduction

The broad structure of modern nonlinear science born at the edge of physics and math-
ematics includes an enormous number of applications in cosmology, biochemistry, elec-
tronics, optics, hydrodynamics, economics, neuroscience, etc. The emergence of non-
linear science itself as a collective interdisciplinary activity is due to the awareness that
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its dynamic concepts first observed and understood in one field (for example, popula-
tion biology, flame-front propagation, non-linear optics or planetary motion) could be
useful in others (such as in chemical dynamics, neuroscience, plasma confinement or
weather prediction). The theory of integrable Hamiltonian systems, a generalization of
the classical theory of differential equations, is the fundamental part of the whole non-
linear science for it yields good mathematical models for many physical phenomena.
Various classifications of integrable systems are presently known which turned out to be
quite useful for physical applications. Classifications are known based on the various
intrinsic properties of integrable systems [56]: symmetries, conservation laws, Lax-pairs,
etc. In [3] the general classification of integrable Hamiltonian systems is presented based
on the form of their topological invariants. The usefulness of this classification is demon-
strated in several problems on solid mechanics. In particular, it is proven that two famous
problems-the Euler case in rigid body dynamics and the Jacobi problem of geodesics on
the ellipsoid-are orbitally equivalent. In [12] the idea of classification is presented based
on normal forms of a certain class of bi-hamiltonian PDEs. Miscellaneous hierarchies of
integrable PDEs are presented in [50].

The list can be prolonged further but the main point for us presently is the following:
the notion of integrability itself is ambitious! There are many quite different definitions of
integrability, for instance integrability in terms of elementary functions (equation ÿ=−y
has the explicit solution y= asin(x+b)); integrability modulo class of functions (equation
ÿ = f (y) has general solutions in terms of elliptic functions), etc. An example of less
obvious definition of integrability is C-integrability, first introduced in [6]: integrability
modulo change of variables, meaning that a nonlinear equation is called C-integrable if it
can be turned into a linear equation by an appropriate invertible change of variables. For
instance, Thomas equation ψxy+αψx+βψy+ψxψy=0 is C-integrable. Profound discussion
on the subject can be found in [36]. In the present paper, integrability is interpreted in
terms of the existence of a number of independent dynamical invariants of the system;
for each in-this-sense-integrable system, solutions are then written out in quadratures.

The dynamical systems we are interested in, describe nonlinear resonance clusters
appearing in evolutionary dispersive wave systems in two space variables. Nonlinear
resonances are ubiquitous in physics. They appear in a great amount of typical mechan-
ical systems [13, 38], in engineering [8, 18, 39, 63], astronomy [55], biology [16], etc. Euler
equations, regarded with various boundary conditions and specific values of some pa-
rameters, describe an enormous number of nonlinear dispersive wave systems (capillary
waves, surface water waves, atmospheric planetary waves, drift waves in plasma, etc) all
possessing nonlinear resonances.

The classical approach of statistical wave turbulence theory in a nonlinear wave sys-
tem assumes weak nonlinearity, randomness of phases, infinite-box limit, existence of an
inertial interval in wavenumber space (k0,k1) (where energy input and dissipation are
separated in scales from both energy input and dissipation area) as well as some other
assumptions omitted here (see [70] for more details). As a result, the wave system is
energy conserving, and wave kinetic equations describing the wave spectrum have sta-


