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Abstract. A general finite element solution of the Schrödinger equation for a one-
dimensional problem is presented. The solver is applicable to both stationary and
time-dependent cases with a general user-selected potential term. Furthermore, it is
possible to include external magnetic or electric fields, as well as spin-orbital and spin-
magnetic interactions. We use analytically soluble problems to validate the solver.
The predicted numerical auto-states are compared with the analytical ones, and se-
lected mean values are used to validate the auto-functions. In order to analyze the
performance of the time-dependent Schrödinger equation, a traveling wave package
benchmark was reproduced. In addition, a problem involving the scattering of a wave
packet over a double potential barrier shows the performance of the solver in cases of
transmission and reflection of packages. Other general problems, related to periodic
potentials, are treated with the same general solver and a Lagrange multiplier method
to introduce periodic boundary conditions. Some simple cases of known periodic po-
tential solutions are reported.
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1 Introduction

This work presents a general solver based on finite element methods (FEM) aimed at
solving stationary and time-dependent Schrödinger equations. These equations have
analytical solutions in only a few known problems, which are used in books on quan-
tum mechanics to illustrate several points of the theory, i.e., the harmonic oscillator, the
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hydrogen-like system, or in the case of dynamical problems, spreading of a traveling
wave packet in space and time. More complex potentials require the use of more so-
phisticated methods, such as perturbation theory, variational methods or numeric ap-
proximations. The equation to be solved has the general form (atomic units are used
throughout the text):

(1

2
∆+V+F(L,S,B,E)

)

Ψ= i
∂Ψ

∂t
, (1.1)

where V represents the external potential and the function F is a general expression
which may contain interactions between external magnetic or electrical fields, spin or-
bit coupling, etc. This general equation can be solved using several numerical schemes.
Examples of the finite difference approach can be found in [1, 2]. In such references,
an explicit Numerov method is used in order to reach a general solution of both sta-
tionary and dynamical problems. This method produces good results for the problems
treated but requires a double explicit integration of the system over the domain, and
incorporates other limitations specific to the numerical tool. Since the seventies, sev-
eral approaches to quantum mechanical systems applying FEM to atomic and molecu-
lar problems in one, two and three dimensions have been developed [3–12]. Many of
these aim to solve hydrogen-like systems with radial symmetry [3], problems involving
two-dimensional Schrödinger equations [5], or more sophisticated systems such as the
Helium ground state or the Lithium ground state after an integration of the equations
in three and six dimensions, after choosing adequate changes in the coordinate system
[9, 10]. Other work provides more accurate solutions for systems that are difficult to
solve analytically, such as atoms in strong magnetic and electrical fields [6, 8] or time-
dependent perturbations, systems which are solved to using others techniques like finite
differences and spectral analysis and provides a good reference to try a new numeri-
cal technique [26, 27]. More advanced studies extend FEM to self-consistent approaches
to quantum systems (DFT and TDDFT), to calculate electronic structures and molecu-
lar states [11, 12]. Periodic potentials (common in solid-state physics) are treated using
FEM for example in [10, 25], where a general approach to solving systems with peri-
odic boundary conditions is reported, with well-behaved solutions. All of these works
show that FEM is a powerful tool for spatially integrating the Schrödinger equation with
atomic and molecular potentials in several dimensions. It also shows the high accuracy
of the method; which is comparable with other approaches to solving the same equations
[12]. One of the most important advantages of FEM over the finite difference method is
the possibility of choosing completely general discretization of the space domain with-
out any modification of the system. This allows the use of elements of different size,
depending on the requirements of the solution. Using this characteristic, it is possible to
choose a fine mesh over that portion of the domain where the solutions contain sharp
peaks and a coarser mesh near the external boundaries. This reduces the impact of dif-
fusion errors involved in the numerical schema. FEM have further been used to solve
the Schrödinger equation with potentials other than those that are atomic or molecular,
such as the three-dimensional harmonic oscillator. Reference [13] shows the important


