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Abstract. In this paper, a multilevel domain decomposition approach based on multi-
grid methods for obtaining fast solutions for coupled engineering flow applications
arising on complex domains is presented. The proposed technique not only allows
solutions to be computed efficiently at the element level but also helps us to achieve
proper accuracy, load balancing and computational efficiency. Numerical results pre-
sented demonstrate the robustness of the proposed technique.

AMS subject classifications: 65N30, 65N55, 65N12

Key words: Finite element methods, multigrid methods, domain decomposition.

1 Introduction

Over the last decade, there have been significant advances in developing solution method-
ologies for studying complex dynamics of coupled processes arising in a variety of ap-
plications that involve multiple interactions between flow, temperature and structures
[3, 4, 9–11, 25, 33, 34, 37]. Domain decomposition techniques with non-matching grids
have become increasingly popular in studying such coupled processes [2, 5, 29, 30]. In
particular, they help achieve fast and accurate solutions to various applications involv-
ing coupled processes when used in conjunction with multigrid techniques [19,32]. They
also allow coupling of different subdomains with nonmatching grids and different dis-
cretization techniques and the solution can be efficiently implemented even over parallel
architectures.
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The purpose of this paper is to introduce a flexible domain decomposition approach
that involves multigrid algorithm that will be used to study different engineering appli-
cations that involve flow mechanics. The first two applications involve flows through a
channel with square cavities. The third and the fourth applications involve interaction
between flow and large deforming structures.

2 Model and governing equations

We denote by Hs(O), s∈ℜ, the standard Sobolev space of order s with respect to the set O,
which is either the flow domain Ω, or its boundary Γ, or part of its boundary. Hence, we
associate with Hm(O), its natural norm ‖·‖m,O. For 1≤ p<∞, the Sobolev space Wm,p(O)
is defined as the closure of C∞(O) in the norm
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The closure of C∞
0 (O) under the norm ‖·‖Wm,p(O) will be denoted by W

m,p
0 (O). Whenever

possible, we will neglect the domain label in the norm.

For vector-valued functions and spaces, we use boldface notation. For example,
Hs(Ω) = [Hs(Ω)]n denotes the space of ℜn-valued functions such that each component
belongs to Hs(Ω). Also we denote the space of square integrable functions having zero
mean over Ω by L2

0(Ω) and the space of solenoidal functions

V(Ω)={u∈H1(Ω) |∇·u =0}.

For Γ1⊂Γ with non-zero measure, we also consider the subspace

H1
Γ1

(Ω)={v∈H1(Ω) |v=~0 on Γ1}.

Also, we denote H1
0(Ω)=H1

Γ(Ω). For any v∈H1(Ω), we write ‖∇v‖ for the semi-norm.
Let (H1

Γ1
)∗ denote the dual space of H1

Γ1
. Note that (H1

Γ1
)∗ is a subspace of H−1(Ω), where

the latter is the dual space of H1
0(Ω). The duality pairing between H−1(Ω) and H1

0(Ω) is
denoted by < · ,·>.

Let g be an element of H1/2(Γ). It is well known that H1/2(Γ) is a Hilbert space with
norm

‖g‖ 1
2 ,Γ = inf

v∈H1(Ω);γΓv=g
‖v‖1 ,

where γΓ denotes the trace mapping γΓ : H1(Ω)→H1/2(Γ). We let (H1/2(Γ))∗ denote the
dual space of H1/2(Γ) and < · ,·>Γ denote the duality pairing between (H1/2(Γ))∗ and
H1/2(Γ).


