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Abstract. We present an efficient numerical strategy for the Bayesian solution of in-
verse problems. Stochastic collocation methods, based on generalized polynomial
chaos (gPC), are used to construct a polynomial approximation of the forward solu-
tion over the support of the prior distribution. This approximation then defines a sur-
rogate posterior probability density that can be evaluated repeatedly at minimal com-
putational cost. The ability to simulate a large number of samples from the posterior
distribution results in very accurate estimates of the inverse solution and its associ-
ated uncertainty. Combined with high accuracy of the gPC-based forward solver, the
new algorithm can provide great efficiency in practical applications. A rigorous error
analysis of the algorithm is conducted, where we establish convergence of the approx-
imate posterior to the true posterior and obtain an estimate of the convergence rate. It
is proved that fast (exponential) convergence of the gPC forward solution yields sim-
ilarly fast (exponential) convergence of the posterior. The numerical strategy and the
predicted convergence rates are then demonstrated on nonlinear inverse problems of
varying smoothness and dimension.
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1 Introduction

The indirect estimation of model parameters or inputs from observations constitutes an
inverse problem. Such problems arise frequently in science and engineering, with applica-
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tions ranging from subsurface and atmospheric transport to chemical kinetics. In prac-
tical settings, observations are inevitably noisy and may be limited in number or resolu-
tion. Quantifying the resulting uncertainty in inputs or parameters is then essential for
predictive modeling and simulation-based decision-making.

The Bayesian approach to inverse problems [6,13,18,22,23] provides a foundation for
inference from noisy and incomplete data, a natural mechanism for incorporating physi-
cal constraints and heterogeneous sources of information, and a quantitative assessment
of uncertainty in the inverse solution. Indeed, the Bayesian setting casts the inverse solu-
tion as a posterior probability distribution over the model parameters or inputs. Though
conceptually straightforward, this setting presents challenges in practice; the posterior
probability distribution is typically not of analytical form and, especially in high dimen-
sions, cannot be easily interrogated. Many numerical approaches have been developed
in response, mostly seeking to approximate the posterior distribution or posterior ex-
pectations via samples [9]. These approaches require repeated solutions of the forward
model; when the model is computationally intensive, e.g., specified by partial differential
equations (PDEs), the Bayesian approach then becomes prohibitive.

Several efforts at accelerating Bayesian inference in inverse problems have appeared
in recent literature; these have relied largely on reductions or surrogates for the forward
model [3, 14,17, 24], or instead have sought more efficient sampling from the poste-
rior [4,5,11]. Recent work [17] used (generalized) polynomial chaos (gPC)-based stochas-
tic Galerkin methods [8,29] to propagate prior uncertainty through the forward model,
thus yielding a polynomial approximation of the forward solution over the support of
the prior. This approximation then entered the likelihood function, resulting in a poste-
rior density that was inexpensive to evaluate. This scheme was used to infer parameters
appearing nonlinearly in a transient diffusion equation, demonstrating exponential con-
vergence to the true posterior and multiple order-of-magnitude speedup in posterior ex-
ploration via Markov chain Monte Carlo (MCMC). The gPC stochastic Galerkin approach
has also been extended to Bayesian inference of spatially-distributed quantities, such as
inhomogeneous material properties appearing as coefficients in a PDE [16].

An alternative to the stochastic Galerkin approach to uncertainty propagation is
stochastic collocation [25,27]. A key advantage of stochastic collocation is that it requires
only a finite number of uncoupled deterministic simulations, with no reformulation of
the governing equations of the forward model. Also, stochastic collocation can deal
with highly nonlinear problems that are challenging, if not impossible, to handle with
stochastic Galerkin methods. A spectral representation may also be applied to arbitrary
functionals of the forward solution; moreover, many methods exist for addressing high
input dimensionality via efficient low-degree integration formulae or sparse grids. For
an extensive discussion of gPC-based algorithms, see [26].

This paper extends the work of [17] by using gPC stochastic collocation to construct
posterior surrogates for efficient Bayesian inference in inverse problems. We also con-
duct a rigorous error analysis of the gPC Bayesian inverse scheme. Convergence of the
approximate posterior distribution to the true posterior distribution is established and



