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Abstract. Power-law distributions and other skew distributions, observed in various
models and real systems, are considered. A model, describing evolving systems with
increasing number of elements, is considered to study the distribution over element
sizes. Stationary power-law distributions are found. Certain non-stationary skew dis-
tributions are obtained and analyzed, based on exact solutions and numerical simula-
tions.
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1 Introduction

Power laws are observed in many systems. Particularly, one has to note the critical phe-
nomena in interacting many-particle systems, which are associated with cooperative fluc-
tuations of a large number of microscopic degrees of freedom. The singularities of vari-
ous quantities in vicinity of the phase transition point are described by the critical expo-
nents. It has been rigorously shown for a class of exactly solved models [1–3], which are
mainly the two-dimensional lattice models. For three-dimensional systems, exact results
are difficult to obtain and approximate methods are usually used. A review of numerical
results, as well as of the applied here standard perturbative renormalization group (RG)
methods can be found, e.g., in [4]. An alternative approach has been proposed in [5].
There are also many textbooks devoted to this topic, e.g., [6–9]. A general review of
critical phenomena in various systems can be found, e.g., in [10]. Recently, the role of
quantum fluctuations in critical phenomena has been reviewed and discussed in [11].

∗Corresponding author. Email addresses: reinhard.mahnke@uni-rostock.de (R. Mahnke), kaupuzs@latnet.
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Goldstone mode power-law singularities are observed also below the critical temper-
ature in some systems, where the order parameter is an n-component vector with n> 1
(see, e.g., [12–17]). These systems are spin models having O(n) rotational symmetry in
zero external field. This is an interesting example of power law behavior, exhibited by
the transverse and longitudinal correlation functions in the ordered phase. Moreover,
according to the recent Monte Carlo (MC) simulation results [18–20], it is very plausible
that this behavior is described by nontrivial exponents, as predicted in [17].

For a general review, one has to mention that phase transitions described by power
laws and critical exponents are observed in variety of systems, such as social, economical,
biological systems, as well as vehicular traffic flow, which are often referred in literature
as non-physical systems. In particular, traffic flow is a driven one-dimensional system in
which, unlike to one-dimensional equilibrium systems, phase transitions are observed.
Formation of a car cluster on the road is analogous to aggregation phenomena in many
physical systems [21]. The widely used approach in description of the vehicular traffic, as
well as the traffic in biological systems such as ants, is the simulation by cellular automata
models. One can mention here the famous Nagel-Schreckenberg model [22], which has
numerous extensions, e.g., [23–29]. A good review about this topic can be found in [30].
Stochastic fluctuations play an important role here. A new approach to this problem, em-
phasizing the role of the stochasticity, has been introduced in [31]. The master equation
is used here to describe the jam formation on a road as a stochastic one-step process, in
which the size of a car cluster is a stochastic variable. The results of this approach have
been summarized in the review paper [32], as well as in the recent textbook [33]. The
critical behavior, found in a simple traffic flow model considered in [32], is described by
the mean-field exponent β=1/2 for the order parameter (see p. 75 in [32]).

The power laws in critical phenomena have been discussed in [34] in a general context
of many other examples, where the power-law distributions emerge. A distinguishing
feature of the critical phenomena is the existence of certain length scale, which diverges
at specially chosen parameters, i.e., at the critical point. It results in a scale-free or power-
law distribution. In some cases, however, no fine tuning of parameters is necessary to
observe the critical phenomena. It refers to systems exhibiting the self-organized critical-
ity. Any such system adjusts itself to the critical point due to some dynamical process.
The percolation on square lattice have been discussed in [34] as an example of critical
phenomena and the forest fire model-as an example of the self-organized criticality. Spin
systems with global rotational symmetry could be added here as a different example of
the power-law behavior at a divergent length scale. Namely, the correlation length in
such systems is divergent at vanishing external field not only at the critical temperature,
but also below it. It results in the already mentioned here power-law Goldstone mode
singularities.

Apart from the appearance of the divergent length scale, there are also other mecha-
nisms how the power laws emerge. Many examples have been reviewed and discussed
in [10, 34–37] pointing out the ubiquitous observation of power law distributions in na-
ture. A tool for analyzing power law distributed empirical data in presented in [36]. A


