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Abstract. We present a parallel Cartesian method to solve elliptic problems with com-
plex immersed interfaces. This method is based on a finite-difference scheme and is
second-order accurate in the whole domain. The originality of the method lies in the
use of additional unknowns located on the interface, allowing to express straightfor-
wardly the interface transmission conditions. We describe the method and the details
of its parallelization performed with the PETSc library. Then we present numerical
validations in two dimensions, assorted with comparisons to other related methods,
and a numerical study of the parallelized method.
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1 Introduction

In this paper we aim to solve on Cartesian grids with an order two accuracy the following
problem:

∇.(k∇u)= f , on Ω=Ω1∪Ω2, (1.1)

JuK=α, on Σ, (1.2)

Jk
∂u

∂n
K=β, on Σ, (1.3)
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Figure 1: Geometry considered: two subdomains Ω1 and Ω2 separated by a complex interface Σ.

assorted with boundary conditions on δΩ defined as the boundary of Ω, and where J·K
means ·1−·2. As illustrated on Fig. 1, Ω consists in the union of two subdomains Ω1

and Ω2, separated by a complex interface Σ. This elliptic problem with discontinuities
across an interface appears in numerous physical or biological models. Among the well-
known applications are heat transfer, electrostatics, fluid dynamics, but similar elliptic
problems arise for instance in tumor growth modelling, where one has to solve a pressure
equation [11], or in the modelling of electric potential in biological cells [12]. In this latter
case the jump of the solution across the interface is proportional to the interior normal
derivative.

To solve an elliptic interface problem in the case of a complex interface, an alternative
approach to body-fitted methods (see for instance [5, 10, 13]) is to discretize and solve
the problem on a Cartesian grid. In this case, one takes into account the influence of
the complex interface through modifications of the numerical scheme near the interface,
without need of remeshing if the interface moves.

The first Cartesian grid method for elliptic problems was designed by Mayo in 1984
[30], and developed further in [31, 32]. In that work an integral equation was derived
to solve elliptic interface problems with piecewise coefficients to second-order accuracy
in maximum norm. Then LeVeque and Li (1994) [25] devised the very well known Im-
mersed Interface Method (IIM). This method relies on Taylor expansions of the solution
on each side of the interface, with a local coordinate transformation near the interface to
express the jump conditions in an appropriate frame. The elliptic operator is discretized
on each grid point near the interface with formulas accounting for the jumps across the
interface. In order to find these formulas a linear system with six unknowns needs to be
solved for each of the concerned grid points. The method is also second-order accurate
in maximum norm. Numerous developments of the IIM have been performed. In the
following lines we briefly evoke the most relevant. Li [26] developed a fast IIM algo-
rithm for elliptic problems with piecewise constant coefficients. This version of IIM used
auxiliary unknowns expressing the normal derivative at the interface. The fast IIM algo-
rithm was generalized by Wiegmann and Bube in [42] under the name of Explicit Jump
Immersed Interface Method (EJIIM). The EJIIM considers a classical finite-difference dis-


