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Abstract. The immersed boundary (IB) method is an approach to problems of fluid-struc-
ture interaction in which an elastic structure is immersed in a viscous incompress-
ible fluid. The IB formulation of such problems uses a Lagrangian description of the
structure and an Eulerian description of the fluid. It is well known that some ver-
sions of the IB method can suffer from poor volume conservation. Methods have
been introduced to improve the volume-conservation properties of the IB method, but
they either have been fairly specialized, or have used complex, nonstandard Eulerian
finite-difference discretizations. In this paper, we use quasi-static and dynamic bench-
mark problems to investigate the effect of the choice of Eulerian discretization on the
volume-conservation properties of a formally second-order accurate IB method. We
consider both collocated and staggered-grid discretization methods. For the tests con-
sidered herein, the staggered-grid IB scheme generally yields at least a modest im-
provement in volume conservation when compared to cell-centered methods, and in
many cases considered in this work, the spurious volume changes exhibited by the
staggered-grid IB method are more than an order of magnitude smaller than those of
the collocated schemes. We also compare the performance of cell-centered schemes
that use either exact or approximate projection methods. We find that the volume-
conservation properties of approximate projection IB methods depend strongly on the
formulation of the projection method. When used with the IB method, we find that
pressure-free approximate projection methods can yield extremely poor volume con-
servation, whereas pressure-increment approximate projection methods yield volume
conservation that is nearly identical to that of a cell-centered exact projection method.
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1 Introduction

The immersed boundary (IB) method for fluid-structure interaction [1] is a mathematical for-
mulation and numerical scheme for problems in which an elastic structure is immersed
in a viscous incompressible fluid. In the IB formulation of such problems, the elasticity
of the structure is described in Lagrangian form, and the momentum, velocity, and in-
compressibility of the coupled fluid-structure system are described in Eulerian form. In
the continuous IB formulation, coupling between Lagrangian and Eulerian variables is
mediated by integral equations with Dirac delta function kernels. The discrete version
of the IB method employs approximations to these integral equations in which a regular-
ized version of the delta function is used in place of the singular delta function kernels.
The discretized integral equations are used to spread the Lagrangian forces generated by
the immersed elastic structure to the Eulerian grid, and to interpolate the Eulerian velocity
field to the nodes of the Lagrangian mesh.

It is well known that some versions of the IB method can suffer from poor volume
conservation [2,3]. This lack of volume conservation manifests itself as an apparent fluid
“leak” at fluid-structure interfaces, which occurs even though the Lagrangian structure
moves at the local fluid velocity. Peskin and Printz [2] recognized that one cause of this
lack of volume conservation is that the interpolated velocity field that determines the
motion of the Lagrangian structure is not generally divergence free, even if the Eulerian
velocity is divergence free with respect to the discrete divergence operator used in the nu-
merical solution of the incompressible Navier-Stokes equations. To obtain a Lagrangian
velocity field that is more nearly incompressible, Peskin and Printz constructed a modi-
fied finite-difference approximation to the Eulerian divergence operator that ensures that
the interpolated velocity field is divergence free in an average sense. Their improved vol-
ume conservation IB method [2] uses this modified discretization to dramatically reduce the
volume losses exhibited by the standard IB method. Despite the improvements in accu-
racy offered by this method, it does not appear to be widely used in practice. (See [4–6],
however, for recent applications of the method.) A drawback of the improved volume
conservation IB method that may have slowed its adoption is that it uses a complex, non-
standard finite-difference discretization of the incompressible Navier-Stokes equations.
The coefficients of this modified finite-difference scheme must be derived from the form
of the regularized delta function, and the resulting finite-difference operators possess
broad stencils that can increase the computational expense of the method. Other, more
specialized approaches to improving the volume conservation of the IB method have also
been introduced, including by Newren [7] and by Stockie [8], but these methods may not
be well-suited for general use.

Herein, we study the effect of the Eulerian spatial discretization on the volume conser-
vation of a formally second-order accurate IB method in two spatial dimensions, restrict-
ing our attention to standard finite-difference schemes that are similar to discretization
methods commonly used in implementations of the IB method. To minimize the differ-
ences between the discretization approaches, the Eulerian domain is taken to be periodic


