
Commun. Comput. Phys.
doi: 10.4208/cicp.250911.030212a

Vol. 12, No. 5, pp. 1495-1519
November 2012

A Reconstructed Discontinuous Galerkin Method for

the Euler Equations on Arbitrary Grids

Hong Luo1,∗, Luqing Luo1 and Robert Nourgaliev2

1 Department of Mechanical and Aerospace Engineering, North Carolina State
University, Raleigh, NC, 27695, USA.
2 Thermal Science and Safety Analysis Department, Idaho National Laboratory,
Idaho Falls, ID, 83415, USA.

Received 25 September 2011; Accepted (in revised version) 3 February 2012

Communicated by Kun Xu

Available online 22 May 2012

Abstract. A reconstruction-based discontinuous Galerkin (RDG(P1P2)) method, a vari-
ant of P1P2 method, is presented for the solution of the compressible Euler equations
on arbitrary grids. In this method, an in-cell reconstruction, designed to enhance the
accuracy of the discontinuous Galerkin method, is used to obtain a quadratic polyno-
mial solution (P2) from the underlying linear polynomial (P1) discontinuous Galerkin
solution using a least-squares method. The stencils used in the reconstruction in-
volve only the von Neumann neighborhood (face-neighboring cells) and are com-
pact and consistent with the underlying DG method. The developed RDG method
is used to compute a variety of flow problems on arbitrary meshes to demonstrate
its accuracy, efficiency, robustness, and versatility. The numerical results indicate that
this RDG(P1P2) method is third-order accurate, and outperforms the third-order DG
method (DG(P2)) in terms of both computing costs and storage requirements.
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1 Introduction

The discontinuous Galerkin methods [1–28] (DGM) have recently become popular for the
solution of systems of conservation laws. Originally introduced for the solution of neu-
tron transport equations [1], nowadays they are widely used in computational fluid dy-
namics, computational acoustics, and computational magneto-hydrodynamics. The dis-
continuous Galerkin methods combine two advantageous features commonly associated

∗Corresponding author. Email addresses: hong luo@ncsu.edu (H. Luo), lluo2@ncsu.edu (L. Luo), Robert.
Nourgaliev@inl.gov (R. Nourgaliev)

http://www.global-sci.com/ 1495 c©2012 Global-Science Press



1496 H. Luo, L. Luo and R. Nourgaliev / Commun. Comput. Phys., 12 (2012), pp. 1495-1519

with finite element and finite volume methods. As in classical finite element methods,
accuracy is obtained by means of high-order polynomial approximation within an ele-
ment rather than by wide stencils as in the case of finite volume methods. The physics of
wave propagation is, however, accounted for by solving the Riemann problems that arise
from the discontinuous representation of the solution at element interfaces. In this re-
spect, the DG methods are similar to finite volume methods. The discontinuous Galerkin
methods have many attractive features: 1) They have several useful mathematical prop-
erties with respect to conservation, stability, and convergence; 2) The methods can be
easily extended to higher-order (>2nd) approximation; 3) The methods are well suited
for complex geometries since they can be applied on unstructured grids. In addition,
the methods can also handle non-conforming elements, where the grids are allowed to
have hanging nodes; 4) The methods are highly parallelizable, as they are compact and
each element is independent. Since the elements are discontinuous, and the inter-element
communications are minimal, domain decomposition can be efficiently employed. The
compactness also allows for structured and simplified coding for the methods; 5) They
can easily handle adaptive strategies, since refining or coarsening a grid can be achieved
without considering the continuity restriction commonly associated with the conforming
elements. The methods allow easy implementation of hp-refinement, for example, the
order of accuracy, or shape, can vary from element to element; 6) They have the ability to
compute low Mach number flow problems without recourse to the time-preconditioning
techniques normally required for the finite volume methods. In contrast to the enormous
advances in the theoretical and numerical analysis of the DGM, the development of a
viable, attractive, competitive, and ultimately superior DG method over the more ma-
ture and well-established second order methods is relatively an untouched area. This is
mainly due to the fact that the DGM have a number of weaknesses that have yet to be
addressed, before they can be robustly used for flow problems of practical interest in a
complex configuration environment. In particular, there are three most challenging and
unresolved issues in the DGM: a) how to efficiently discretize diffusion terms required
for the Navier-Stokes equations, b) how to effectively control spurious oscillations in
the presence of strong discontinuities, and c) how to develop efficient time integration
schemes for time accurate and steady-state solutions. Indeed, compared to the finite ele-
ment methods and finite volume methods, the DG methods require solutions of systems
of equations with more unknowns for the same grids. Consequently, these methods have
been recognized as expensive in terms of both computational costs and storage require-
ments.

DG methods are indeed a natural choice for the solution of the hyperbolic equations,
such as the compressible Euler equations. However, the DG formulation is far less cer-
tain and advantageous for the compressible Navier-Stokes equations, where viscous and
heat fluxes exist. A severe difficulty raised by the application of the DG methods to
the Navier-Stokes equations is the approximation of the numerical fluxes for the viscous
fluxes, that has to properly resolve the discontinuities at the interfaces. Taking a simple
arithmetic mean of the solution derivatives from the left and right is inconsistent, be-


