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Abstract. We propose a direct solver for the three-dimensional Poisson equation with
a variable coefficient, and an algorithm to directly solve the associated sparse lin-
ear systems that exploits the sparsity pattern of the coefficient matrix. Introducing
some appropriate finite difference operators, we derive a second-order scheme for the
solver, and then two suitable high-order compact schemes are also discussed. For

a cube containing N nodes, the solver requires O(N 3/2 log2 N) arithmetic operations
and O(N logN) memory to store the necessary information. Its efficiency is illustrated
with examples, and the numerical results are analysed.
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1 Introduction

In dealing with sparse linear algebraic systems that arise in the discretization of elliptic
partial differential equations, iterative solvers require the pre-handling of ill-conditioned
matrices, e.g., the Conjugate Gradient and Generalized Minimum Residual methods. On
the other hand, compared with the iterative solvers using direct elimination can always
get result easier when dealing with poorly conditioned coefficient matrices usually.

In a typical direct solver, there is usually an initial ordering step to reorder the rows
and columns, so that the transformed coefficient matrix has some special structure such
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as block-triangular form. The internal structure of the dense matrices may also be ex-
ploited, to reduce the computational cost [4,5]. For example, a spiral pattern of the order-
ings that arise from a 2-D elliptic PDE can render the linear system in a block-tridiagonal
form [1]; and it has also been shown that a sweeping ordering efficiently solves a 2-D
discrete system arising from a moving perfectly matching layer (PML), using banded
LU-factorization [2]. Another technique for dimension-reduction, with a much simpler
format to deal with such structured matrices [1], has influenced us in designing our direct
solver. It combines a similar dimension-reduction technique with fast algorithms for the
spiral pattern, to solve the resulting sequence of sparse coefficient matrices.

Our main application is to a Poisson equation with variable coefficient, which arises
in many areas including electric or electromagnetic field theory and heat conduction, i.e.,

∇·ρ∇u= f . (1.1)

For example, Eq. (1.1) applies in the theory of electrolyte solutions, where the distribution
of counterion density strongly depends on the dielectric coefficients [7,8]. Changes in the
dielectric coefficient for the electrolyte solution (from 10 to 25, 40, 60, and 78.5 within
the first 7.4 Angströms at the surface of DNA) substantially increase the calculated sur-
face concentration of counterions of all sizes. In a contoured lattice model involving a
dielectric boundary and Boltzmann equation for the charge density, the Poisson equation

−∇·[ε(r)∇φ(r)]=ρ(r)/ε0

of form similar to (1.1) can be approximated by the finite element representation

∑
j

[(φi−φj)ε ij ]=ρi h2/ε0 ,

where ε ij is the arithmetic average of the dielectric coefficients (for the elements i and j)
and ρi denotes the relevant value of the charge distribution. Yet another example arises
in diffusion-reaction processes [9], where

∂pi(r,t)

∂t
=∇·

{
Di(r)e−βVi(r,t)∇(eβVi(r)pi(r,t))

}
+αi(r)pi(r,t),

∇·ǫ∇φ(r,t)=−ρ f (r)−∑
i

qi pi(r,t)

involves the density distribution function pi(r,t) of the diffusing particles of the ith species
with diffusion coefficient Di(r) and charge qi, the fixed source charge distribution ρ f , the
inverse Boltzmann energy β, the dielectric coefficient ǫ, the potential V i that imposes
driving forces on the ith diffusing species, and the intrinsic reaction rate αi(r). The di-
electric coefficient actually depends in a complicated way on the pressure, temperature
and material density, but for simplicity it was argued that one may adopt the linear form

ǫ=ǫp+
pw

pw
0

∗(ǫw−ǫp) , (1.2)


