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Abstract. We construct a new first-order central-upwind numerical method for solv-
ing systems of hyperbolic equations in conservative form. It applies in multidimen-
sional structured and unstructured meshes. The proposed method is an extension of
the UFORCE method developed by Stecca, Siviglia and Toro [25], in which the upwind
bias for the modification of the staggered mesh is evaluated taking into account the
smallest and largest wave of the entire Riemann fan. The proposed first-order method
is shown to be identical to the Godunov upwind method in applications to a 2×2 linear
hyperbolic system. The method is then extended to non-linear systems and its perfor-
mance is assessed by solving the two-dimensional inviscid shallow water equations.
Extension to second-order accuracy is carried out using an ADER-WENO approach in
the finite volume framework on unstructured meshes. Finally, numerical comparison
with current competing numerical methods enables us to identify the salient features
of the proposed method.
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1 Introduction

1.1 Preliminaries

We consider a general system of non-linear conservation laws in α space dimensions:
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∂tQ+div
(
F(Q)

)
=0 , (1.1)

where F(Q) is the flux tensor.

We assume a conforming tessellation TΩ of the computational domain Ω⊂Rα by ne

elements Ti such that:

TΩ=
ne⋃

i=1

Ti . (1.2)

Each element Ti has n f plane interfaces Sj of size
∣∣Sj

∣∣, with associated outward pointing
face normal vectors ~nj. Element Ti, having size |Ti|, is sub-divided into subvolumes V−

j

generated by connecting the barycentre of Ti with the vertices of Sj. The correspond-
ing adjacent subvolume in the neighbouring element that shares face Sj with element
Ti is denoted as V+

j . Fig. 1 illustrates the above definitions and notation for the two-

dimensional case. Note that the intersection of V−
j and V+

j gives the interface Sj of the

element Ti. With reference to Fig. 1 we distinguish two kinds of elements: primary ele-
ments Ti, at which the solution is sought at each time step, and secondary elements formed
by V−

j

⋃
V+

j , for j=1,2,3.

Finite volume schemes are obtained by integration of the conservation law (1.1) over
a space-time control volume Ti×

[
tn,tn+1

]
, yielding:

Qn+1
i =Qn

i −
∆t

|Ti|

n f

∑
j=1

∫

Sj

F
j+ 1

2

(
Qn

i ,Qn
j

)
·~njd~x , (1.3)

where Qn
i is the cell average at time level n and ∆t= tn+1−tn is the time step. Two dif-

ferent approaches are available for determining F
j+ 1

2

. The first approach is the upwind

approach, represented by Godunov’s method [9] and the second is the centred approach,
typically represented by the Lax-Friedrichs flux and variations of it [18]. For a compre-
hensive presentation of upwind, and also some centred methods, see for example [27]
and references therein.

In this paper we derive a central-upwind method which partially uses upwind infor-
mation, while retaining the simplicity and efficiency of a centred scheme. Kurganov and
Tadmor put forward an analogous idea in their central-upwind approach [17], using an
adaptive staggered mesh. Their scheme is based on a modification of the centred scheme
of Nessyahu and Tadmor [21], where the staggered mesh is fixed. Extensions to mul-
tidimensions of the scheme of Nessyahu and Tadmor [21] has been obtained by Jiang
and Tadmor [13] and by Arminjon and collaborators [1]. Multi-dimensional extensions
of the scheme of Kurganov and Tadmor have been presented in [14] (Cartesian version)
and [16] (unstructured version), while a modified version of the scheme optimised for
treating contact discontinuities, which makes use of partial characteristic decomposition,
has been presented in [15].


