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Abstract. We construct an efficient numerical scheme for the quantum Fokker-Planck-
Landau (FPL) equation that works uniformly from kinetic to fluid regimes. Such a
scheme inevitably needs an implicit discretization of the nonlinear collision operator,
which is difficult to invert. Inspired by work [9] we seek a linear operator to penal-
ize the quantum FPL collision term QqFPL in order to remove the stiffness induced by
the small Knudsen number. However, there is no suitable simple quantum operator
serving the purpose and for this kind of operators one has to solve the complicated
quantum Maxwellians (Bose-Einstein or Fermi-Dirac distribution). In this paper, we
propose to penalize QqFPL by the ”classical” linear Fokker-Planck operator. It is based
on the observation that the classical Maxwellian, with the temperature replaced by the
internal energy, has the same first five moments as the quantum Maxwellian. Numer-
ical results for Bose and Fermi gases are presented to illustrate the efficiency of the
scheme in both fluid and kinetic regimes.
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1 Introduction

The Fokker-Planck-Landau (FPL) equation is a kinetic model widely used in plasma
physics. It describes the time evolution of charged particles in a plasma [21, 22]. When
the quantum effects of particles are taken into account, for example, several bosons can
occupy the same quantum state while only one fermion can occupy a particular quantum
state, one has to use the following so-called quantum Fokker-Planck-Landau equation,

∂ f

∂t
+v·∇x f =

1

ε
QqFPL( f ), x∈Ω⊂R

dx , v∈R
dv , (1.1)

where f (t,x,v)≥0 is the phase space distribution function depending on time t, position
x and particle velocity v. ε is the Knudsen number which measures the degree of rar-
efiedness of the particles. It is the ratio of the mean free path and the typical length scale.
The quantum collision operator QqFPL is given by

QqFPL( f )(v)=∇v ·
∫

Rdv
A(v−v∗)

[
f∗(1±θ0 f∗)∇v f − f (1±θ0 f )∇v∗ f∗

]
dv∗ (1.2)

with f = f (t,x,v) and f∗= f (t,x,v∗). A(z)=Ψ(|z|)Π(z) is a dv×dv semi-positive definite
matrix and Π(z) is the orthogonal projection onto the space orthogonal to z,

Π(z)= I− z⊗z

|z|2 , I is the identity matrix. (1.3)

For inverse-power law interactions, Ψ(|z|)=|z|γ+2 with −3≤γ≤1. The case γ=−3 refers
to the Coulomb potential which is of primary importance in plasma applications. The

parameter θ0 = h̄dv , where h̄ is the rescaled Planck constant. Here in (1.2) and the sequel,
the upper sign will always correspond to the Bose gas (composed of bosons) while the
lower sign to the Fermi gas (composed of fermions). For the latter f must also satisfy
f ≤1/θ0 by the Pauli exclusion principle.

Unlike the classical FPL equation, very few studies have been conducted on the quan-
tum FPL equation. See [7] for a formal derivation from the quantum Boltzmann equation
in the grazing collision limit and [23] for a spectral analysis of its linearization near the
equilibrium. In the spatially homogeneous setting, the well-posedness and regularity of
the solution were established in [1,5] for Fermi-Dirac particles and the equilibrium states
were rigorously determined in [2].

It is well-known that the equilibrium, in this context the quantum Maxwellian Mq

(Bose-Einstein or Fermi-Dirac distribution), is reached when the Knudsen number ε goes
to zero. Then we could instead consider the limiting hydrodynamic equations satisfied
by the moments of Mq. However, fluid equations are not adequate for many applica-
tions. Very often one has to deal with multiscale phenomena, where the Knudsen number
varies between different regimes. Our goal in this paper is to design an efficient numeri-
cal scheme for the quantum FPL equation (1.1) that works uniformly for both kinetic and


