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Abstract. In this paper, the second in a series, we improve the discretization of the
higher spatial derivative terms in a spectral volume (SV) context. The motivation for
the above comes from [J. Sci. Comput., 46(2), 314–328], wherein the authors developed
a variant of the LDG (Local Discontinuous Galerkin) flux discretization method. This
variant (aptly named LDG2), not only displayed higher accuracy than the LDG ap-
proach, but also vastly reduced its unsymmetrical nature. In this paper, we adapt the
LDG2 formulation for discretizing third derivative terms. A linear Fourier analysis
was performed to compare the dispersion and the dissipation properties of the LDG2
and the LDG formulations. The results of the analysis showed that the LDG2 scheme
(i) is stable for 2nd and 3rd orders and (ii) generates smaller dissipation and disper-
sion errors than the LDG formulation for all the orders. The 4th order LDG2 scheme is
however mildly unstable: as the real component of the principal eigen value briefly be-
comes positive. In order to circumvent the above, a weighted average of the LDG and
the LDG2 fluxes was used as the final numerical flux. Even a weight of 1.5% for the
LDG (i.e., 98.5% for the LDG2) was sufficient to make the scheme stable. This weighted
scheme is still predominantly LDG2 and hence generated smaller dissipation and dis-
persion errors than the LDG formulation. Numerical experiments are performed to
validate the analysis. In general, the numerical results are very promising and indicate
that the approach has a great potential for higher dimension Korteweg-de Vries (KdV)
type problems.
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1 Introduction

We continue with the development of the spectral volume (SV) method for solving equa-
tions containing higher spatial derivative terms, following the first paper in the series [17],
wherein a LDG flux discretization method was employed for handling equations contain-
ing third derivative terms. The ultimate goal of this research study is to have a spectral
volume formulation for equations containing higher spatial derivative terms, with the
following attributes: (a) high order accurate; (b) easily applicable to multi dimensional
problems; (c) geometrically flexible; (d) easily hook up with an implicit solver and al-
gebraic, geometric and polynomial multigrid preconditioners and (e) easily extendable
(eventually) for even higher (fourth or more) spatial derivative terms.

The spectral volume method was originally formulated Wang et al. [25, 31–35] and
further developed by Kannan et al. [12–22] for conservation laws on unstructured grids.
The spectral volume method can be viewed as an extension of the Godunov method to
higher order by adding more degrees-of-freedom (DOFs) in the form of sub cells in each
cell (simplex). The simplex is referred to as a spectral volume (SV) and the subcells are
referred to as control volumes (CV). All the SVs are partitioned in a geometrically similar
manner in a simplex, and thus a single reconstruction is obtained. The DOFs are then
updated to high-order accuracy using the usual Godunov method.

The SV method was successfully implemented for 2D Euler [34] and 3D Maxwell
equations [25]. The quadrature free formulation was implemented by Harris et al. [9]. A
h-p adaptation was also carried out in 2D [10]. Recently Sun et al. [29] implemented the
SV method for the Navier Stokes equations using the LDG [7] approach to discretize the
viscous fluxes. Kannan and Wang [14, 22] conducted some Fourier analysis for a variety
of viscous flux formulations. Kannan implemented the SV method for the Navier Stokes
equations using the LDG2 (which is an improvised variant of the LDG approach) [15]
and DDG approaches [16]. Even more recently, Kannan extended the SV method to solve
the moment models in semiconductor device simulations [12, 13]. A new high order
boundary condition was developed in the SV context for inviscid flows by Kannan [18].
A SV formulation for the line contact Elastohydrodynamic Lubrication problem was de-
veloped by Kannan [19].

In this paper, we adapt the LDG2 formulation for solving equations containing third
spatial derivative terms in a SV context. The LDG2 formulation was recently proposed
by Kannan and Wang [15], as an improvement to the traditional LDG formulation. The
LDG2 formulation is more symmetrical and displays higher accuracy than the LDG for-
mulation. Fourier analysis was performed on the LDG and the new variant (LDG2) and
these yielded some interesting results on accuracy and stability of the formulation. Nu-
merical tests were performed to confirm the above.

The paper is organized as follows. In the next section, we review the basics of the SV
method. The LDG formulation for high order spatial derivatives is presented in Section
3. A detailed linear analysis is performed for the LDG formulation in Section 4. Section
5 presents with the different test cases conducted in this study. Finally conclusions from


