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Abstract. Centered numerical fluxes can be constructed for compressible Euler equa-
tions which preserve kinetic energy in the semi-discrete finite volume scheme. The es-

sential feature is that the momentum flux should be of the form f m
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are any consistent approximations to the

pressure and the mass flux. This scheme thus leaves most terms in the numerical
flux unspecified and various authors have used simple averaging. Here we enforce
approximate or exact entropy consistency which leads to a unique choice of all the
terms in the numerical fluxes. As a consequence novel entropy conservative flux that
also preserves kinetic energy for the semi-discrete finite volume scheme has been pro-
posed. These fluxes are centered and some dissipation has to be added if shocks are
present or if the mesh is coarse. We construct scalar artificial dissipation terms which
are kinetic energy stable and satisfy approximate/exact entropy condition. Secondly,
we use entropy-variable based matrix dissipation flux which leads to kinetic energy
and entropy stable schemes. These schemes are shown to be free of entropy violating
solutions unlike the original Roe scheme. For hypersonic flows a blended scheme is
proposed which gives carbuncle free solutions for blunt body flows. Numerical results
for Euler and Navier-Stokes equations are presented to demonstrate the performance
of the different schemes.
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1 Introduction

The numerical solution of compressible Euler and Navier-Stokes (NS) equations by the
finite volume method is now a routine task in many industries, see [29] for a good review
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of numerical approaches. Due to their non-linear hyperbolic nature, solutions of Euler
equations can be discontinuous with the presence of shocks or contact discontinuities.
Discontinuous solutions must necessarily satisfy the Rankine-Hugoniot jump conditions
which are a consequence of conservation. However it is well known that such solutions
can be still non-unique and an additional entropy condition has to be imposed in order to
select the unique weak solution. In the case of Euler equations, there is a natural entropy
condition which comes from the entropy condition in thermodynamics which must also
be satisfied by the numerical scheme. Additionally other global balance equations like
that for the total kinetic energy must also be consistently approximated by the numerical
solutions. The finite volume method requires the computation of the inviscid and vis-
cous fluxes across the boundaries of the finite volumes. The design of these fluxes must
incorporate the properties of the Euler/NS equations like entropy condition and kinetic
energy preservation. There exists a vast library of numerical flux functions for the Euler
equations and some of these like the Godunov scheme and kinetic scheme can be shown
to satisfy the entropy condition. The popular Roe scheme [20] does not satisfy the en-
tropy condition and can give rise to entropy violating shocks near sonic points. Various
entropy fixes for Roe scheme have been proposed which involve preventing the numer-
ical dissipation from vanishing at sonic points. Osher-type schemes which are similar
to Roe scheme have been constructed which satisfy entropy condition [3]. Flux splitting
schemes like the AUSM family [22] also satisfy the entropy condition. Tadmor [26] pro-
posed the idea of entropy conservative numerical fluxes which can then be combined with
some dissipation terms using entropy variables to obtain a scheme that respects the en-
tropy condition, i.e., the scheme must produce entropy in accordance with the second
law of thermodynamics. However some of these entropy conservative numerical fluxes
have to be computed with quadrature rules since the integrals involved in the definition
of the flux cannot be evaluated explicitly. For the Euler equations, Roe proposed explicit
entropy conservative numerical fluxes [10,21] which are augmented by Roe-type dissipa-
tion terms using entropy variables. These schemes do not suffer from entropy violating
solutions that are observed in the original Roe scheme. However for strong shocks, even
the first order schemes can produce oscillations indicating that the amount of numerical
dissipation is not sufficient. Roe [10] proposed modifying the eigenvalues of the dissipa-
tion matrix which lead to non-oscillatory solutions. The modification of the eigenvalues
is such that the amount of entropy production is of the correct order of magnitude for
weak shocks. The availability of cheap entropy conservative fluxes allows us to use the
procedure of [15] to develop high order accurate entropy conservative schemes. Matrix
dissipation can be added following the ENO procedure of [4] to develop arbitrarily high
order accurate entropy stable schemes for the Euler equations on structured grids. How-
ever even entropy satisfying schemes which resolve contact waves accurately can give
rise to some strange effects like the carbuncle phenomenon and shock instability prob-
lem for which additional fixes have to be applied [31].

Faithful representation of kinetic energy evolution is another desirable property of a
numerical scheme [12]. This is important for direct numerical simulation of turbulent


