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Abstract. Boundary integral methods are naturally suited for the computation of har-
monic functions on a region having inclusions or cells with different material proper-
ties. However, accuracy deteriorates when the cell boundaries are close to each other.
We present a boundary integral method in two dimensions which is specially designed
to maintain second order accuracy even if boundaries are arbitrarily close. The method
uses a regularization of the integral kernel which admits analytically determined cor-
rections to maintain accuracy. For boundaries with many components we use the fast
multipole method for efficient summation. We compute electric potentials on a domain
with cells whose conductivity differs from that of the surrounding medium. We first
solve an integral equation for a source term on the cell interfaces and then find values
of the potential near the interfaces via integrals. Finally we use a Poisson solver to ex-
tend the potential to a regular grid covering the entire region. A number of examples
are presented. We demonstrate that increased refinement is not needed to maintain
accuracy as interfaces become very close.

AMS subject classifications: 35J05, 65N06, 65N38

Key words: Laplace equation, boundary integral method, fast multipole method.

1 Introduction

A wide range of biological problems lead to models involving a potential function in
tissue with a number of closely packed cells. Recent applications include gene trans-
fection [14, 15], electrochemotherapy of tumors [20] and cardiac defibrillation [1]. Our
interest in the problem is mainly motivated by studies of the electrical response of bio-
logical cells under field stimulation [25], which can be described by harmonic potential
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functions on a domain consisting of many cells and an extracellular region with different
conductivities. These potentials are naturally expressed as integrals on the cell bound-
aries. Boundary integral methods are well suited for the computation of such problems,
but they require special care when the cell boundaries are close. We present a method
which is designed to handle such cases accurately and efficiently. We focus here on the
model of electrical stimulation of cells in two dimensions, but similar computational is-
sues occur in other applications. For example, the motion of drops of one viscous fluid
in another, or the fluid motion of vesicles, such as blood cells, is often modeled by Stokes
flow, leading to a related integral formulation, again with many components embedded
in a surrounding medium [16, 22, 23, 26, 27].

The electric potential problem is formulated in Sections 2 and 3. Since the potential is
a harmonic function inside each cell and in the exterior region, with prescribed boundary
conditions at the cell interfaces, it is natural to write the potential as a sum of single and
double layer potentials on the cell boundaries Γk, k= 1,··· ,K, and evaluate the integrals
directly. In principle this is routine if the point of evaluation x is away from Γk. It is
also not difficult in this two-dimensional setting if x∈ Γk. However, if, for example, Γ1

and Γ2 are close and x∈Γ1, then the integral on Γ2 is nearly singular, so that a standard
quadrature rule becomes inaccurate when the distance is small. It is therefore desirable
to use a method of quadrature which is accurate, uniformly with respect to the point
of evaluation, without requiring a large amount of extra work. A method with these
features was developed in [5] and is used here. Briefly, the singularity in the integral
kernel is regularized on a scale comparable to the grid size, and a standard quadrature is
used for the regularized integral. Analytical corrections are then added for the errors due
to regularization and discretization. It is not necessary to use special quadrature points
depending on the point of evaluation; the method is almost as efficient as for a smooth
integrand. The present work makes practical use of this integration method in the case
where several interfaces are close to each other. The quadrature and correction formulas
are given in detail in Section 4. A similar method for layer potentials on surfaces was
developed in [4].

To solve for the potential, we first solve an integral equation for a source term on
the cell boundaries. We then compute the potential at grid points covering the region
of interest. To compute the integrals directly would require a large computational cost,
especially if the number of cells is large. For this reason we use a version of the fast
multipole method for the interaction of points which are well separated; the effect of the
regularization can be neglected in this case. The nearby interactions are summed directly,
using the regularized kernel. This procedure is explained in Section 5. The regularization
must be used within a large enough radius for accuracy, but it imposes a lower bound
on the capacity in the tree structure for the fast summation. Guidelines for the choice
of parameters are given to balance the accuracy and efficiency. A similar procedure was
used in the context of regularized point vortices in [10].

After solving the integral equation, we evaluate the potential at grid points near the
cell boundaries. These values are again given by nearly singular integrals, which are


