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Abstract. A fully discrete discontinuous Galerkin method is introduced for solving
time-dependent Maxwell’s equations. Distinguished from the Runge-Kutta discontin-
uous Galerkin method (RKDG) and the finite element time domain method (FETD), in
our scheme, discontinuous Galerkin methods are used to discretize not only the spatial
domain but also the temporal domain. The proposed numerical scheme is proved to be
unconditionally stable, and a convergent rate O((△t)r+1 +hk+1/2) is established un-
der the L2-norm when polynomials of degree at most r and k are used for temporal and
spatial approximation, respectively. Numerical results in both 2-D and 3-D are pro-
vided to validate the theoretical prediction. An ultra-convergence of order (△t)2r+1 in
time step is observed numerically for the numerical fluxes w.r.t. temporal variable at
the grid points.
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1 Introduction

Finite element methods, including edge element methods and discontinuous Galerkin
methods, have been widely used to solve time-harmonic Maxwell’s equations [2,4,28] as
well as time-dependent Maxwell’s equations [8, 9, 11, 15, 20–27], due to their high order
accuracy and flexibility in handling complicated domains. Traditionally, they were only
used to discretize the spatial domain to produce a system of ordinary differential equa-
tions (in time t), which was then solved by the finite difference or Runge-Kutta meth-
ods [8, 11, 15, 25, 27]. Towards this end, Makridakis and Monk proposed a fully discrete
finite element method for Maxwell’s equations and investigated the corresponding er-
ror estimates in [26]. Their approach resulted in a coupled non-symmetric and indefi-
nite linear algebraic system involving both electric and magnetic fields. Later, Ciarlet Jr.
and Zou [9] analyzed a fully discrete finite element approach for a second-order elec-
tric field equation derived from Maxwell’s equations by eliminating the magnetic field.
Both optimal energy-norm error estimate and optimal L2-norm error estimate were ob-
tained. When dispersive media were involved, Li proposed some fully discrete numerical
schemes. Both mixed finite element method [20–22] and interior penalty discontinuous
Galerkin method [23] are considered for spatial discretization. Since Maxwell’s equations
are a coupled system, a fully discrete scheme was proposed by Ma [25], aimed to reduce
the computational cost by denoting the magnetic field explicitly in the numerical scheme.

The idea to discretize the temporal domain by finite element method is not something
new in the literature. Actually it was proposed as early as in late 60’s by Argyris and
Scharpf [1], and Oden [30]. Since then the space-time finite element methods have been
widely used to solve a variety of differential equations, e.g., see [3,5,16] for the implemen-
tation of time-continuous Galerkin finite element schemes. Some works on space-time fi-
nite element method for solving hyperbolic equations are available, see [29,32]. Recently,
Tu et al., proposed a space-time discontinuous Galerkin cell vertex scheme to solve con-
servation law and time dependent diffusion equations [33]. This scheme is conceptually
simpler than other existing DG-type methods. Nevertheless, to the best of our knowl-
edge, the finite element method has not been used to discretize the temporal domain in
fully discrete scheme for Maxwell’s equations up to now.

On the other hand, time-discontinuous Galerkin methods were originally developed
for the first order hyperbolic equations [19, 31] and have been successfully applied to
various hyperbolic and parabolic equations (see [12, 16] and the references therein).
They usually lead to some stable and higher-order accurate numerical schemes. Ac-
tually in [18, 19], the time-discontinuous Galerkin method was first shown to be an
A-stable, higher-order accurate ordinary differential equation solver. Furthermore, the
time-discontinuous Galerkin framework seems conducive for the rigorous justification
of the error estimates [18].

In [34] we introduced a semi-discrete locally divergence-free DG method for solv-
ing Maxwell’s equations in dispersive media under a unified framework. After the dis-
cretization of the spatial domain, we obtained a Volterra integro-differential system in


