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Abstract. As the numerical resolution is increased and the discretisation error de-
creases, the lattice Boltzmann method tends towards the discrete-velocity Boltzmann
equation (DVBE). An expression for the propagation properties of plane sound waves
is found for this equation. This expression is compared to similar ones from the Navier-
Stokes and Burnett models, and is found to be closest to the latter. The anisotropy of
sound propagation with the DVBE is examined using a two-dimensional velocity set.
It is found that both the anisotropy and the deviation between the models is negligible
if the Knudsen number is less than 1 by at least an order of magnitude.
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1 Introduction

The lattice Boltzmann method (LBM) is a fairly recent development in computational
fluid dynamics (CFD). While traditional CFD methods are based on discretising the con-
servation equations of the continuum model, the LBM is based on discretising the Boltz-
mann equation from the kinetic theory of gases. The Boltzmann equation describes how
distributions of particles in a gas propagate and collide, thus giving a more detailed pic-
ture than the continuum model. It can be shown that the total behaviour of these particle
distributions at long time scales corresponds with the conservation equations of the con-
tinuum model [1].

Although the lattice Boltzmann method can be used to simulate weakly compressible
flow [2], current research has largely been confined to incompressible flow. However, in
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the last few years several articles have been published on applying the LBM for com-
putational aeroacoustics (CAA) [3, 4], i.e. for simulating generation of sound waves in
unsteady flow. This subject is based on the theory of aeroacoustics first developed by
Lighthill [5].

In some cases the generated sound has a strong feedback interaction with the fluid
flow, as in the problem of tone generation in corrugated pipes [6]. These cases must be
studied using a compressible flow simulation. As the LBM is more straightforward to
implement and more parallelisable than traditional compressible CFD methods, it could
be a useful supplement to traditional CAA methods.

However, the propagation of sound waves for the LBM has not yet been sufficiently
studied. A previous article by this author looked at the case of plane sound waves in
the LBM [7], and showed disagreement between the LBM and Navier-Stokes even in the
limit of no discretisation error. The goal of the present article is twofold: To explain this
disagreement, and to further examine the behaviour of the LBM in this limit. The focus
here will be narrower than in the previous article; this article will only look at absorption
and dispersion of spatially damped plane sound waves.

The limit of no discretisation error is an important one; if a numerical method does
not behave correctly in this limit it is inconsistent, and its behaviour can not necessarily
be improved by improving the numerical resolution.

In Section 2, the basics of damped plane sound waves are explained. Section 3 de-
rives an analytic expression for the propagation of these sound waves from the discrete-
velocity Boltzmann equation (DVBE), which corresponds to the aforementioned limit of
the LBM. This is compared in Section 4 with similar expressions from other models.
Section 5 extends the derivation from Section 3 to two dimensions, and examines the
isotropy properties of the DVBE.

2 Damped sound waves

In a sound wave, the density ρ, particle velocity u, and pressure p oscillate around an
equilibrium state. We assume here that the oscillations are infinitesimal monofrequency
plane waves propagating in the +x-direction, and write them in phasor form,
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û′

p̂′
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Throughout this article, hats indicate complex numbers and primes are used for infinites-
imally small oscillation amplitudes.

If we split the angular frequency ω̂ and wavenumber k̂ into real and imaginary parts,

ω̂=ωr+iαt, k̂= kr−iαx, (2.2)


