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Abstract. In this paper, an immersed interface method is presented to simulate the
dynamics of inextensible interfaces in an incompressible flow. The tension is intro-
duced as an augmented variable to satisfy the constraint of interface inextensibility,
and the resulting augmented system is solved by the GMRES method. In this work,
the arclength of the interface is locally and globally conserved as the enclosed region
undergoes deformation. The forces at the interface are calculated from the configura-
tion of the interface and the computed augmented variable, and then applied to the
fluid through the related jump conditions. The governing equations are discretized on
a MAC grid via a second-order finite difference scheme which incorporates jump con-
tributions and solved by the conjugate gradient Uzawa-type method. The proposed
method is applied to several examples including the deformation of a liquid capsule
with inextensible interfaces in a shear flow. Numerical results reveal that both the area
enclosed by interface and arclength of interface are conserved well simultaneously.
These provide further evidence on the capability of the present method to simulate
incompressible flows involving inextensible interfaces.
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1 Introduction

The membrane of biological cells consisting of lipid bilayers has much attention due to
the occurrence in many biological phenomena [28] and used widely as model for the
red blood cells [24] and drug-carrying capsules [30]. Most biological membranes can
deform but resist area dilation and are often modelled as inextensible interfaces with the
position-dependent tension playing the role of surface pressure [41]. To account for the
interface inextensibility or incompressibility, the tension is an unknown quantity which
is to be computed as part of the solution so as to satisfy the condition of inextensibility. In
another word, this is to ensure that the arclength of an arbitrary element of the membrane
is conserved during the motion. The viscous flows outside and inside the membrane can
also be treated as comprising similar or different incompressible fluids.

Peskin’s immersed boundary method (IBM) [22] has been applied widely for simu-
lating such biological flows with moving interfaces. The method was originally devel-
oped to study the fluid dynamics of blood flow in a human heart [21], and has further
been developed for a wide variety of applications; in particular for the biological prob-
lems where complex geometries and immersed elastic interfaces are present, such as the
deformation of red blood cells in a shear flow [7], swimming of organisms [9], platelet
aggregation [10, 11, 37], and cochlear dynamics. Other applications can be found in [2],
biofilm processes [6], wood pulp fiber dynamics [25], and with a more extensive list given
in [22]. In the IBM, the force densities are spread to the Cartesian grid points by a dis-
crete representation of the delta function. The fluid equations with the forcing terms are
then solved for the pressure and the velocity at the mentioned Cartesian grid points. The
resulting velocities are then interpolated back to the control points using the same set
of discrete delta functions. Since the immersed boundary method uses the discrete delta
function approach, it smears out sharp interfaces and it is of first-order accuracy in space.

In order to capture the jumps in the solution across the interface, the immersed inter-
face method (IIM) incorporates the known jumps into the finite difference scheme near
the interface. As such, the IIM avoids smearing out the sharp interfaces and maintains
a second-order accuracy. The IIM was originally proposed by LeVeque and Li [15] for
solving elliptic equations, and later extended to Stokes flow with elastic boundaries or
surface tension [14]. The method was further developed for the Navier-Stokes equations
in [12, 13, 17, 19, 39]. The IIM was also used in [4, 18, 26] for solving the two-dimensional
streamfunction-vorticity equations on irregular domains. Tan et al. [36] developed an
IIM for the Stokes equations on irregular domain. In [35], Tan et al. developed an IIM for
the Navier–Stokes equations with discontinuous viscosity across the interface. Xu and
Wang [40] extended the IIM approach to the 3D Navier-Stokes equation for simulating
the fluid-solid interaction. The interested readers are referred to the recently published
book by Li and Ito [16] and the references therein for more applications of the IIM.

In [41], Zhou and Pozrikidis studied the deformation of inextensible interfaces based
on the boundary element formulation. A boundary integral method developed in [33]
for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2D is


