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Abstract. We study compact finite difference methods for the Schrödinger-Poisson
equation in a bounded domain and establish their optimal error estimates under proper
regularity assumptions on wave function ψ and external potential V(x). The Crank-
Nicolson compact finite difference method and the semi-implicit compact finite differ-
ence method are both of order O(h4+τ2) in discrete l2 ,H1 and l∞ norms with mesh
size h and time step τ. For the errors of compact finite difference approximation to
the second derivative and Poisson potential are nonlocal, thus besides the standard
energy method and mathematical induction method, the key technique in analysis is
to estimate the nonlocal approximation errors in discrete l∞ and H1 norm by discrete
maximum principle of elliptic equation and properties of some related matrix. Also
some useful inequalities are established in this paper. Finally, extensive numerical re-
sults are reported to support our error estimates of the numerical methods.
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1 Introduction

The Schrödinger-Poisson system (SPS) is a local single particle approximation of the time-
dependent Hartree-Fock system. It reads, in dimensionless form,

i∂tψ(x,t)=

[
−1

2
∆+V(x)+βΦ(x,t)

]
ψ(x,t), x∈R

d, t>0, (1.1)

∇2Φ(x,t)=−|ψ(x,t)|2 , x∈R
d, (1.2)

ψ(x,t=0)=ψ0(x), x∈R
d. (1.3)
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The complex-valued function ψ(x,t) stands for the single particle wave function with
lim|x|→∞ |ψ(x,t)|=0, V(x) is a given external potential, Φ(x,t) denotes the Poisson poten-
tial subject to open boundary condition, and β∈R is the coupling constant. The attractive
case (β<0) is usually called the Schrödinger-Newton (SN) system and it describes the par-
ticle moving in its own gravitational potential, while the repulsive case (β>0) describing
electrons travelling in its own Coulomb potential is named as Schrödinger-Poisson (SP)
system.

The SPS can be rewritten as nonlinear Schrödinger equation (NLS) as

i∂tψ(x,t)=

[
−1

2
∆+V(x)+βΦ(|ψ|2 ,t)

]
ψ(x,t), x∈R

d, t>0. (1.4)

Here, the Poisson potential is equivalent to Gd(|x|)∗|ψ|2 with Gd(|x|) representing the
Green function of Poisson equation on Rd, which is specified as,

Gd(|x|)=





− 1
2 |x|, d=1,

− 1
2π ln(|x|), d=2,

1
4π |x|−1 , d=3.

(1.5)

There are at least two important invariants of (1.4): the mass of particles

N(ψ) :=‖ψ‖2=
∫

Rd
|ψ(x)|2 dx, (1.6)

and the total energy

E(ψ) :=
∫

Rd

1

2
|∇ψ|2+V(x)|ψ|2+ β

2
Φ(|ψ|2)|ψ|2 dx. (1.7)

The NLS has been studied mathematically and numerically extensively. Mathemati-
cally, for the well-posedness, smoothing effects and long time behavior of SPS with/without
local term (exchange term), we refer to [4, 8, 15, 23, 24] and references therein. Numer-
ically, different efficient and accurate numerical methods had been proposed to solve
NLS, such as the time-splitting spectral/pseudospectral method [2, 9], finite difference
method [5, 6, 11, 27] and finite element method [18, 22] and so on. Specially, for the
Schrödinger-Poisson equation, we refer the reader to [3, 30] for the time splitting pseu-
dospectral method, to [12, 16, 26] for difference method and etc.

Finite difference method is the simplest among them, however, the standard central
difference discretization of the Laplacian operator is only of second order accuracy. If
combined with the partial differential equation, by carefully designating the finite differ-
ence coefficients, one could get higher accuracy with fewer adjacent stencil points, such as
the compact finite difference method. For details about compact finite difference method,
we refer to [17, 19, 29]. Compact finite difference method was popular and had been ap-
plied to different models, such as the cubic nonlinear Schrödinger equation, Helmholtz
equation and Navier-Stokes equation [20, 25, 28] and etc.


