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Kurt Stein1

1 Dept. of Mathematics, Southern Methodist University, Dallas, TX 75275, USA.
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Abstract. Local approximate radiation boundary conditions of optimal efficiency for
the convective wave equation and the linearized Euler equations in waveguide geom-
etry are formulated, analyzed, and tested. The results extend and improve for the con-
vective case the general formulation of high-order local radiation boundary condition
sequences for anisotropic scalar equations developed in [4].
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1 Introduction

The problem of imposing accurate and efficient radiation boundary conditions at non-
physical boundaries is central in the numerical analysis of wave propagation problems.
For isotropic systems, recent results [14] provide local radiation boundary condition se-
quences which guarantee any desired accuracy using a minimal number of terms; pre-
cisely the complexity of the procedure scales as the logarithm of the error tolerance mul-
tiplied by the logarithm of the dimensionless parameter cT/δ where T is the simulation
time, c is the wavespeed, and δ is the minimal separation between wave sources and the
boundary. The goal of this paper is to extend these results to convective waves.

Low order local radiation boundary conditions for convective waves have been used
for at least thirty years [5, 16]. The first application of high-order conditions we know of,
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however, came much later [13]. As advocated here, the implementation is based on aux-
iliary functions. The details of our current approach for general anisotropic scalar wave
equations are given in [4]. What is new in this work is the combination of the general
formulation in [4] with the optimal complete radiation boundary condition parameters
derived in [14], the presentation of numerical experiments for convective problems, and
the generalization of the construction to the linearized Euler equations. Here one must
deal with the presence of vortical modes, which requires small changes to the boundary
condition formulation.

We note that other accurate methods do exist for convective waves. Exact nonlocal
conditions have been implemented for the linearized Euler equations in [1, 2, 10]; these
are certainly accurate, but more costly and less flexible than the approach suggested here.
Another approach is based on the so-called perfectly matched layer (PML). Although
original formulations of PML for the linearized Euler equations were unstable [3], it was
soon discovered how they could be stabilized [6,9,15]. As mentioned in [4], our boundary
condition formulation can be interpreted as a nonstandard semidiscretized PML. How-
ever, for long time computations it is more efficient than the standard approach, as then
the layer thickness must grow like

√
T. See, for example, the exact error analysis given by

Diaz and Joly [7]. In any case, our method has the advantage of providing a parametriza-
tion with any prescribed accuracy without the need to tune ad hoc absorption or grid
stretching profiles.

2 The convective wave equation

We first consider the equation
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u= c2∇2u+ f , (2.1)

where, for definiteness, we assume a waveguide geometry

(x,y)∈R×Ω, α
∂u

∂n
+βu=0, y∈∂Ω, (2.2)

a subsonic, rightmoving flow

0<Mx ≡
Vx

c
<1, (2.3)

and data, u(x,y,0), ∂u
∂t (x,y,0), f (x,y,t) supported in (−L,L)×Ω. Here Ω⊂R

d in general,
though our numerical experiments will be confined to d = 1 and Ω = (−1,1). Also we
assume that c, Vx and, therefore, Mx are constant. Our goal is to construct and test accu-
rate, efficient radiation boundary conditions at xR=±(L+δ) for δ small. A general theory
of high-order radiation conditions for anisotropic and convective wave equations is de-
veloped in [4]. Here we combine that theory with the optimal parametrizations of [14],
which we call complete radiation boundary conditions (CRBCs).


