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Abstract. The commonly used incompressible phase field models for non-reactive, bi-
nary fluids, in which the Cahn-Hilliard equation is used for the transport of phase
variables (volume fractions), conserve the total volume of each phase as well as the ma-
terial volume, but do not conserve the mass of the fluid mixture when densities of two
components are different. In this paper, we formulate the phase field theory for mix-
tures of two incompressible fluids, consistent with the quasi-compressible theory [28],
to ensure conservation of mass and momentum for the fluid mixture in addition to
conservation of volume for each fluid phase. In this formulation, the mass-average ve-
locity is no longer divergence-free (solenoidal) when densities of two components in
the mixture are not equal, making it a compressible model subject to an internal con-
straint. In one formulation of the compressible models with internal constraints (model
2), energy dissipation can be clearly established. An efficient numerical method is then
devised to enforce this compressible internal constraint. Numerical simulations in con-
fined geometries for both compressible and the incompressible models are carried out
using spatially high order spectral methods to contrast the model predictions. Nu-
merical comparisons show that (a) predictions by the two models agree qualitatively
in the situation where the interfacial mixing layer is thin; and (b) predictions differ
significantly in binary fluid mixtures undergoing mixing with a large mixing zone.
The numerical study delineates the limitation of the commonly used incompressible
phase field model using volume fractions and thereby cautions its predictive value in
simulating well-mixed binary fluids.
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1 Introduction

Phase field models have been used successfully to study a variety of interfacial phenom-
ena like equilibrium shapes of vesicle membranes [12–16, 35], blends of polymeric liq-
uids [17, 36–38], multiphase fluid flows [19, 23–25, 28, 40–45], dentritic growth in solidifi-
cation, microstructure evolution [21,22,29], grain growth [8], crack propagation [9], mor-
phological pattern formation in thin films and on surfaces [26,30], self-assembly dynam-
ics of two-phase monolayer on an elastic substrate [27], a wide variety of diffusive and
diffusion-less solid-state phase transitions [10, 39], dislocation modeling in microstruc-
ture, electro-migration and multiscale modeling [34]. Multiple phase-field methods can
be devised to study multiphase materials [40]. Recently, phase field models are applied
to study liquid crystal drop deformation in another fluid, liquid films, polymer nanocom-
posites, and biofilms [5, 18, 19, 23–25, 28, 40–44, 46].

Comparing to other mathematical and computational technologies available for study-
ing multi-phase materials, the phase-field approach exhibits a clear advantage in its sim-
plicity in model formulation, ease of numerical implementation, and the ability to explore
essential interfacial physics at the interfacial regions etc. Computing the interface without
explicitly tracking the interface is the most attractive numerical feature of this modeling
and computational technology. Since the pioneering work of Cahn and Hilliard in the
50’s of the last century, the Cahn-Hilliard equation has been the foundation for various
phase field models [6, 7]. It arises naturally as a model for multiphase fluid mixtures
should the entropic and mixing energy of the mixture system be known. For immiscible
binary fluid mixtures, one commonly uses a labeling or a phase variable (also known as
a volume fraction or an order parameter) φ to distinguish between distinct fluid phases.
For instance φ=1 indicates one fluid phase while φ=0 denotes the other fluid phase in an
immiscible binary mixture. The interfacial region is tracked by 0<φ<1. Given the histor-
ical reason, most mixing energies are calculated in terms of the volume fraction instead
of the mass fraction in the literature [11,20]. Consequently, the system free energy includ-
ing the entropic and mixing contribution has been formulated in the volume fraction as
well, especially for polymeric systems [11, 20]. We acknowledge the existence of diffuse
interface models derived using mass fractions [28], which do not belong to the class of
phase field models we are addressing in this paper. We denote the system free energy for
the material system to be modeled by F(φ,∇φ,···). A transport equation for the volume
fraction φ along with the conservation equation of momentum and continuity equation
constitutes the essential part of the governing system of equations for the binary fluid
mixture. The volume fraction serves as an interval variable for the fluid mixture.

In the literature on immiscible binary mixtures of incompressible fluids, one uses the
concept of chemical potential to formulate the transport equation for the volume fractions
of the fluids φ1 and φ2. In this formulation, the material incompressibility is on the one
hand modeled by the continuity equation

∇·v=0, (1.1)


