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Wave Propagation Across Acoustic/Biot’s Media:
A Finite-Difference Method
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Abstract. Numerical methods are developed to simulate the wave propagation in het-
erogeneous 2D fluid /poroelastic media. Wave propagation is described by the usual
acoustics equations (in the fluid medium) and by the low-frequency Biot’s equations
(in the porous medium). Interface conditions are introduced to model various hy-
draulic contacts between the two media: open pores, sealed pores, and imperfect
pores. Well-posedness of the initial-boundary value problem is proven. Cartesian grid
numerical methods previously developed in porous heterogeneous media are adapted
to the present context: a fourth-order ADER scheme with Strang splitting for time-
marching; a space-time mesh-refinement to capture the slow compressional wave pre-
dicted by Biot’s theory; and an immersed interface method to discretize the interface
conditions and to introduce a subcell resolution. Numerical experiments and com-
parisons with exact solutions are proposed for the three types of interface conditions,
demonstrating the accuracy of the approach.

AMS subject classifications: 35L05, 35150, 65N06, 65N85, 74F10

Key words: Biot’s model, poroelastic waves, jump conditions, imperfect hydraulic contact, high-
order finite differences, immersed interface method.

1 Introduction

The theory developed by Biot in 1956 [3,4] is largely used to describe the wave propaga-
tion in poroelastic media. Three kinds of waves are predicted: the usual shear wave and
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"fast” compressional wave (as in elastodynamics), and an additional “slow” compres-
sional wave observed experimentally in 1981 [33]. This slow wave is a static mode below
a critical frequency, depending on the viscosity of the saturating fluid. In the current
study, we will focus on this low-frequency range.

The coupling between acoustic and poroelastic media is of high interest in many ap-
plications: sea bottom in underwater acoustics [38], borehole logging in civil engineer-
ing [36], and bones in biomechanics [21]. Many theoretical efforts have dealt with the
acoustic/porous wave propagation. Various boundary conditions have been proposed
to describe the hydraulic contacts: open pores, sealed pores, and imperfect pores involv-
ing the hydraulic permeability of the interface [6, 15, 36]. Reflection and transmission
coefficients of plane waves have been derived [39]. The influence of the interface condi-
tions on the existence of surface waves has been investigated in the case of inviscid [15]
and viscous saturating fluids [13,17] in the porous material. The time-domain Green’s
function has been computed by the Cagniard-de Hoop’s method [12,16]. Experimental
works have shown the crucial importance of hydraulic contact on the generation of slow
compressional wave [35].

The literature dedicated to numerical methods for porous wave propagation is large:
see [23], [9] for a review, and the introduction of [11] for a list of time-domain methods.
Coupled fluid/porous configurations have been addressed by an integral method [18], a
spectral-element method [32], and a pseudospectral method [37], to cite a few. To simu-
late efficiently wave propagation in fluid /porous media, numerical methods must over-
come the following difficulties:

e In the low-frequency range, the slow compressional wave is a diffusive-like solu-
tion, and the evolution equations become stiff [34]. It drastically restricts the stabil-
ity condition of any explicit method;

e The diffusive slow compressional wave remains localized near the interfaces. Cap-
turing this wave - that plays a key role on the balance equations - requires a very
fine spatial mesh;

e An accurate description of arbitrary-shaped geometries with various interface con-
ditions is crucial. These properties are badly discretized by finite-difference meth-
ods on Cartesian grids. Alternatively, unstructured meshes provide accurate de-
scriptions, but the computational effort greatly increases;

e An accurate modeling of the hydraulic contact at the interface is also required. In
particular, as far as we know, imperfect pore conditions still have not been ad-
dressed in numerical models.

To overcome these difficulties, we adapt a methodology previously developed in
porous/porous media [11] and fluid/viscoelastic media [28]. Three Cartesian grid nu-
merical methods are put together. A fourth-order ADER scheme with Strang splitting
is used to integrate the evolution equations, ensuring an optimal CFL condition of sta-
bility. Specific solvers are used in the fluid medium and in the porous medium. Their



