
Commun. Comput. Phys.
doi: 10.4208/cicp.351011.260112s

Vol. 13, No. 3, pp. 867-879
March 2013

Developing Extensible Lattice-Boltzmann Simulators for

General-Purpose Graphics-Processing Units

Stuart D. C. Walsh1,∗ and Martin O. Saar2

1 Lawrence Livermore National Laboratory, Livermore, California, USA.†
2 Department of Earth Sciences, University of Minnesota, Minneapolis, Minnesota, USA.

Received 31 October 2011; Accepted (in revised version) 26 January 2012

Available online 29 August 2012

Abstract. Lattice-Boltzmann methods are versatile numerical modeling techniques ca-
pable of reproducing a wide variety of fluid-mechanical behavior. These methods are
well suited to parallel implementation, particularly on the single-instruction multiple
data (SIMD) parallel processing environments found in computer graphics processing
units (GPUs).
Although recent programming tools dramatically improve the ease with which GPU-
based applications can be written, the programming environment still lacks the flexi-
bility available to more traditional CPU programs. In particular, it may be difficult to
develop modular and extensible programs that require variable on-device functional-
ity with current GPU architectures.
This paper describes a process of automatic code generation that overcomes these dif-
ficulties for lattice-Boltzmann simulations. It details the development of GPU-based
modules for an extensible lattice-Boltzmann simulation package – LBHydra. The per-
formance of the automatically generated code is compared to equivalent purpose writ-
ten codes for both single-phase, multiphase, and multicomponent flows. The flexibility
of the new method is demonstrated by simulating a rising, dissolving droplet moving
through a porous medium with user generated lattice-Boltzmann models and subrou-
tines.

PACS: 47.11.-j, 07.05.Bx

Key words: Lattice-Boltzmann methods, graphics processing units, computational fluid dynam-
ics.

1 Introduction

Lattice-Boltzmann simulations are a “bottom-up” numerical method capable of modeling
a variety of complex fluid mechanical problems (for example, complex boundary condi-

∗Corresponding author. Email addresses: walsh24@llnl.gov (S. D. C. Walsh), saar@umn.edu (M. O. Saar)
†This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore Na-
tional Laboratory under Contract DE-AC52-07NA27344.

http://www.global-sci.com/ 867 c©2013 Global-Science Press



868 S. D. C. Walsh and M. O. Saar / Commun. Comput. Phys., 13 (2013), pp. 867-879

tions, immiscible fluids, and heat and solute transport) that are difficult or impossible to
handle with other modeling methods [1–3]‡. Their versatility and relative ease of imple-
mentation makes lattice-Boltzmann methods particularly attractive for a wide range of
applications in both science and engineering [2–4].

In addition, lattice-Boltzmann methods are readily parallelizable and are particularly
suited to implementation on single-instruction multiple data (SIMD) parallel processing
environments. In recent years, substantial performance increases have been achieved
with lattice-Boltzmann methods by exploiting the SIMD environment in modern com-
puter graphics processing units (GPUs) [5–8]. Possibly the first such model proposed
by Li et al. [9] in the early 2000’s achieved an impressive 50× speedup over single core
implementations at the time with 9.87 million lattice-node updates per second (MLUPs).
Early on, significant drawbacks in the GPU programming model (reduced precision and
the requirement that the algorithm be cast in terms of graphics operations), hindered the
programmer’s ability to develop more complex lattice-Boltzmann models, such as mul-
tiphase and multicomponent fluid flow simulations, and presented a significant barrier
to widespread use of GPU-based programs [10]. In the years since, however, these bar-
riers have been largely removed with the release of several general purpose GPU-based
programming tools, such as BrookGPU [11], the ATI CTM platform [12], the Compute
Unified Device Architecture (CUDA) programming model released by NVIDIA [13], and
the closely related cross-platform OpenCL standard [14]. In this paper we use NVIDIA’s
CUDA – a C-like language for general purpose graphics card programming [13]. CUDA
provides new functionality that distinguishes it from the early GPU programming mod-
els (e.g. random access byte-addressable memory and support for coordination and
communication among processes through thread synchronization and shared memory),
thereby allowing more efficient processing of complex data dependencies. CUDA also
supports single and double precision, and IEEE-compliant arithmetic [13]. In addition,
higher-level libraries have been created to simplify CUDA code development, such as the
Thrust library, a collection of parallel algorithms modeled on the C++ Standard Template
Library [15]. These advances have extended the applicability of GPU computation to a
much broader range of computational problems in science and engineering [8].

Nevertheless, while these new GPU programming tools dramatically improve on ear-
lier generations, GPU implementations continue to lack some of the flexibility of CPU
based programs. In part this lack of flexibility arises from differences in GPU and CPU ar-
chitectures. Increased GPU performance is achieved by distributing computational tasks
across several multiprocessors. Together these multiprocessors are able to achieve sub-
stantial processing throughput, however, the individual GPU processing threads lack the
performance, independence and resources (e.g. registers) found in their CPU counter-
parts. These hardware differences restrict the complexity of the operations available to

‡In contrast with traditional “top-down” numerical methods where the material behavior is modeled di-
rectly, lattice-Boltzmann methods may be viewed as “bottom-up” numerical methods in which the behav-
ior emerges from underlying smaller-scale processes – namely the interactions of discrete analogues to the
single-body particle distribution functions described by the classical Boltzmann equation.


