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Abstract. Spectral element methods on simplicial meshes, say TSEM, show both the
advantages of spectral and finite element methods, i.e., spectral accuracy and geomet-
rical flexibility. We present a TSEM solver of the two-dimensional (2D) incompressible
Navier-Stokes equations, with possible extension to the 3D case. It uses a projection
method in time and piecewise polynomial basis functions of arbitrary degree in space.
The so-called Fekete-Gauss TSEM is employed, i.e., Fekete (resp. Gauss) points of the
triangle are used as interpolation (resp. quadrature) points. For the sake of consistency,
isoparametric elements are used to approximate curved geometries. The resolution al-
gorithm is based on an efficient Schur complement method, so that one only solves
for the element boundary nodes. Moreover, the algebraic system is never assembled,
therefore the number of degrees of freedom is not limiting. An accuracy study is car-
ried out and results are provided for classical benchmarks: the driven cavity flow, the
flow between eccentric cylinders and the flow past a cylinder.
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1 Introduction

Using high order/spectral/spectral like methods may be of interest for many physical
problems, e.g., wave propagation over long distances or hydrodynamic instabilities, for
which standard first/second order approximations may completely fail to capture the
correct dynamics. As well known, spectral methods are however usually restricted to
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simple geometries, i.e., Cartesian, cylindrical, spherical, ···. Progresses in this field es-
sentially rely on using embedding methods but at the price of a loss of regularity of the
solution and so, at least formally, of the so-called spectral accuracy. Spectral element
methods (SEMs) are much better adapted to more involved geometries, see e.g. [8, 19].
However, since based on using quadrangular elements (2D case), they may also be not
adapted to really complex ones for which simplicial meshes are required. This is why
going to high order finite element methods (FEMs) or equivalently to SEMs on simplicial
meshes is of increasing interest nowadays.

Many works have been carried out in this field during the last two decades, especially
on the hp-FEM, see e.g. [19, 31] and references herein. Here we rather follow approaches
proposed in the late 90’s and in the 2000’s on the basis of “true SEMs” for simplicial
meshes, see e.g. [12, 15, 16, 28, 35, 40]. Such approaches are of nodal rather than modal
type, i.e., the basis functions are the Lagrange polynomials based on a set of carefully
selected interpolation points. The choice of the best set of points, based on minimiz-
ing the corresponding Lebesgue constant for the reference triangle/tetrahedron, remains
an open problem, which is however now more of academical interest. Various sets of
interpolation points have indeed been proposed, at least in 2D, all of them showing satis-
factory properties as soon as the polynomial interpolation degree on the spectral element
remains reasonable (say N≤12) [26]. Among them we adopt the so-called Fekete points
of the triangle, because of some nice properties, such as the Lagrange polynomials based
on the Fekete points are maximum at these points, i.e., the Lagrange polynomial ϕi based
on the Fekete point Fi is such that max ϕi(x)= ϕi(Fi)=1. Moreover, the Fekete points of
the cube coincide with the Gauss-Lobatto-Legendre (GLL) points [2] involved in the stan-
dard SEM. This allows the efficient interfacing of triangles and quadrilaterals together in
the same mesh, making e.g. possible the use of thin quadrilaterals to capture short length
scales in boundary layers. Note however that, to our knowledge, Fekete points are only
known for the triangle and remain to be determined for the tetrahedron.

As a new contribution to works that we have carried out recently on the so-called
Fekete-Gauss TSEM for elliptic partial differential equations (PDE), see e.g. [24], we focus
here on problems governed by the unsteady incompressible Navier-Stokes equations.
The Fekete-Gauss TSEM (T for triangle/tetrahedron) makes use of two sets of points,
(i) the Fekete points for the interpolations in T and the (ii) Gauss points of T for the
quadratures. Such sets of points depend of course on the polynomial approximation
degree. Adopting two sets of points allows to by-pass the a priori not solvable problem
of finding in a non-tensorial domain a single set of points with both nice quadrature and
interpolation properties, see [37] and references herein. In other words the Fekete points
of T are not Gauss points, contrary to the GLL points for the cube. Moreover, as detailed
in [24], the use of two sets of points provides a larger flexibility and may be handled
efficiently.

The paper is organized as follows: Section 2 describes the time scheme, based of an
implicit (resp. explicit) treatment of the diffusion (resp. advection) term and an up to
date projection method. Section 3 provides details on the TSEM approximation. Section


