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Abstract. We present a well-posed and discretely stable perfectly matched layer for
the anisotropic (and isotropic) elastic wave equations without first re-writing the gov-
erning equations as a first order system. The new model is derived by the complex
coordinate stretching technique. Using standard perturbation methods we show that
complex frequency shift together with a chosen real scaling factor ensures the decay of
eigen-modes for all relevant frequencies. To buttress the stability properties and the ro-
bustness of the proposed model, numerical experiments are presented for anisotropic
elastic wave equations. The model is approximated with a stable node-centered finite
difference scheme that is second order accurate both in time and space.
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1 Introduction

Perfectly matched layers (PML) have since the introduction [3], emerged as a standard
non-reflecting boundary closure for many wave propagation problems. The basic prop-
erties of a PML can be found in [6]. In this paper we consider linear, anisotropic elasto-
dynamics in two space dimensions. Equations describing the dynamics are usually de-
rived via Newton’s law, which connects acceleration and force, and yields a second or-
der system (in both time and space) for the displacements. The system is hyperbolic,
and by introducing suitable variables the model can be rewritten as a hyperbolic first
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order system. PMLs for elasto-dynamics are usually derived from the first order formu-
lation [4, 5, 23]. This is also the case for other hyperbolic systems that naturally come in
second order formulation, like the standard wave equation.

However, there are several advantages with using the second order formulation. The
first order formulation requires more variables, and it introduces a new wave with zero
wave speed. Also, in many cases a straightforward discretization of the first order formu-
lation introduces high frequency spurious modes. In this paper we construct a PML for
the second order equations of linear, anisotropic elasto-dynamics in two space dimen-
sions without first rewriting the equations as a first order system. By construction the
PML is perfectly matched, but there is no guarantee that all solutions decay with time.
The analysis of temporal stability is therefore a main topic of research. In [4], the geomet-
ric stability condition was formulated, and found to be a necessary condition for stability
of the split field PML. In [5], it was proved to be necessary also for stability of a modal
PML, even though the complex frequency shift had a stabilizing effect.

The aim of this paper is to construct efficient layers based on the second order equa-
tions, for all materials, and also those violating the geometric stability condition. The
PML equations are derived using a complex coordinate stretching technique, [6, 17]. We
include a grid stretching parameter and a complex frequency shift. One advantage of this
approach is that we can choose auxiliary variables so that the resulting system is strongly
hyperbolic.

In computations using standard second order central finite differences, our PML be-
haves dramatically better than the corresponding first order PMLs, for materials where
the geometric stability condition is violated. In many cases no growth is seen in the com-
putation even at very late times. A large part of the paper is dedicated to understanding
why our PML behaves in this stable way, and how the stable behavior can be enhanced.

We start by applying a standard perturbation analysis to our PML at constant coeffi-
cients. The result is that our PML suffers from the same high frequency instability as the
above mentioned first order PMLs for the geometric stability violating materials. From
the analysis we know that the instability appears only at sufficiently high spatial frequen-
cies. If these frequencies are not well resolved, the discrete behavior may be completely
different. A straight forward computation of the temporal eigenvalues corresponding to
the discrete spatial operator in a constant coefficient setting shows that if unstable modes
are not well resolved, they are in fact stable in the discrete setting. We have investigated
how the grid stretching parameter can be used to enhance this effect.

A second reason is the stabilizing effect of corner regions. When the layers are used
as boundary closures completely surrounding a domain there are usually corner regions.
We use the same perturbation technique as above applied to a constant coefficient corner
problem, and find that our PML is significantly more stable in the corner region. In
computations we have observed that the bulk of an unstable mode typically is localized
to part of the layer and propagates tangentially while the amplitude grows. Eventually
the bulk of the unstable mode moves into a corner region and is damped.

The paper is organized as follows. In Section 2 we introduce the elastic wave equa-


