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Abstract. A new solution methodology is proposed for solving efficiently Helmholtz
problems. The proposed method falls in the category of the discontinuous Galerkin
methods. However, unlike the existing solution methodologies, this method requires
solving (a) well-posed local problems to determine the primal variable, and (b) a global
positive semi-definite Hermitian system to evaluate the Lagrange multiplier needed to
restore the continuity across the element edges. Illustrative numerical results obtained
for two-dimensional interior Helmholtz problems are presented to assess the accuracy
and the stability of the proposed solution methodology.
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1 Introduction

The Helmholtz equation belongs to the classical equations of mathematical physics that
are well understood from a mathematical view point. However, the numerical approx-
imation of the solution is still a challenging problem in spite the tremendous progress
made during the past fifty years (see, for example, the recent monograph [18] and the
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references therein). Indeed, the standard finite element method (FEM) is not well suited
for solving Helmholtz problems in the mid- and high-frequency regime because of the
quasi-optimality constant which grows with the wavenumber k, as explained in details
in [5]. In order to maintain a certain level of accuracy while increasing the frequency, a
mesh refinement is required and/or higher order FEM are used, leading to a prohibitive
computational cost for high wavenumbers.

In response to this challenge, alternative techniques were proposed. Numerous of
these approaches use the plane waves, since they are expected to better approximate
highly oscillating waves [4,6–12,19,20,23]. In the discontinuous Galerkin method (DGM)
designed by Farhat et al. and presented in a series of papers [8–10], the solution is approx-
imated at the element mesh level using a superposition of plane waves which results in
a discontinuous solution along interior boundaries of the mesh. The continuity is then
restored weakly with Lagrange multipliers. The rectangular and quadrilateral elements
constructed in [8–10] clearly outperform the standard Galerkin FEM. For example, for
ka ≥ 10 and for a fixed level of accuracy, the so-called R-4-1 element reduces the total
number of degrees of freedom (dofs) required by the Q1 finite element by a factor greater
or equal to five. Similar results are obtained for the R-8-2a and R-8-2b elements when
compared to the Q2 element, and for Q-16-4 and Q-32-8 when compared to the Q4 ele-
ment. In spite of this impressive performance, the DGM has three important drawbacks.
First, the method has to satisfy an inf-sup condition which is translated, in practice, as a
compatibility requirement: the number of dofs of the Lagrange multiplier (correspond-
ing to the dual variable) and of the field (the primal variable) cannot be chosen arbitrarily.
The problem here is that there is no theoretical result on how to satisfy this compatibility
requirement, except for the simple case of R-4-1 element (see [2]). Hence, for other ele-
ments, the existing choices are based on numerical experiments only. The second major
issue with the DGM is that it becomes unstable as we refine the mesh [1]. Such insta-
bilities occur because of the singularity of the local problems and, to some extent, to the
loss of the linear independence of the plane waves as the step size mesh discretization
tends to zero. The latter affects dramatically the stability of the global system due to
its ill-conditioning nature. Finally, the DGM exhibits a loss of accuracy for unstructured
mesh [9].

We propose a new solution methodology for Helmholtz problems, that falls in the
category of discontinuous Galerkin methods. The proposed formulation distinguishes it-
self from existing procedures by the well-posed character of the local problems and by the
resulting global system which is associated with a positive semi-definite Hermitian matrix.
More specifically, the computation domain is subdivided in quadrilateral- or triangular-
shaped elements. The solution is approximated, at the element level, by a superposition
of plane waves that are solution of the Helmholtz equation. The continuity of the solution
at the interior interfaces of the elements is then enforced by Lagrange multipliers. Unlike
the DGM, the proposed method does not require the continuity of the normal derivative.
Consequently, Lagrange multipliers are introduced to restore, in a weak sense, the conti-
nuity of both the field and its normal derivative across interior boundaries of the mesh.


