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Abstract. In this paper, we consider an interior penalty discontinuous Galerkin (DG)
method for the time-dependent Maxwell’s equations in cold plasma. In Huang and Li
(J. Sci. Comput., 42 (2009), 321–340), for both semi and fully discrete DG schemes, we
proved error estimates which are optimal in the energy norm, but sub-optimal in the
L2-norm. Here by filling this gap, we show that these schemes are optimally conver-
gent in the L2-norm on quasi-uniform tetrahedral meshes if the solution is sufficiently
smooth.
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1 Introduction

Recently, there is a growing interest in the finite element modeling and analysis of
Maxwell’s equations (see books [7, 14, 21] and references cited therein). However, most
work are still limited to the simple medium (such as vacuum) case. On the other hand,
dispersive media (whose physical parameters are wavelength dependent) are ubiqui-
tous. Examples include human tissue, soil, snow, ice, plasma, optical fibers and radar-
absorbing materials. Hence the study of how electromagnetic waves interacting with
dispersive media becomes an important subject.

Though the original discontinuous Galerkin (DG) method has been known since its
introduction in 1973 by Reed and Hill, it was only recently that DG regained its popu-
larity in solving various differential equations. It is known that the DG method offers
great flexibility in the mesh construction by allowing different types of elements, non-
matching grids, and even varying polynomial orders. Due to the imposition of weak
continuity across element interfaces, the DG method is easy for parallel implementation.
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A detailed overview of the evolution of the DG methods from 1973 to 1999 is provided
by Cockburn et al. [6]. More details and early references on DG can be found in [2, 6].

Some DG methods have been developed for Maxwell’s equations in the simple
medium case [4, 5, 8, 9, 13, 15, 22] in the past decade. We like to remark that most of
the DG methods are based on writing the Maxwell’s equations in first-order hyperbolic
systems; while [9,15] treated the Maxwell’s equations in second order vector wave equa-
tion. Some most recent developments of DG methods for wave problems can be found
in the Proceedings of Waves 2009 [3]. However, the study of DG method for Maxwell’s
equations in dispersive media is quite limited. In 2004, a time-domain DG method was
investigated in [20] for solving the first-order Maxwell’s equations in dispersive media.
In 2009, we [16] initiated the analysis of the interior penalty DG method for Maxwell’s
equations in dispersive media. However, the error estimates obtained there is optimal in
the energy norm, but sub-optimal in the L2-norm. In this paper, by borrowing many ideas
from [9,11,12,15] originally developed for the curl-curl operator, we manage to prove the
optimal error estimates in the L2-norm for both semi and fully discrete schemes. Note
that our proof is slightly different from [9, 11, 12, 15] by considering that our problem is
a differential-integral equation instead of the standard vector wave equation. For sim-
plicity, we only consider the cold plasma model here, since analysis of other dispersive
media models [17] can be carried out similarly.

By introducing cv =(
√

ǫ0µ0)−1 as the speed of wave propagation in vacuum, we can
rewrite the governing equation for the isotropic nonmagnetized cold electron plasma
model [16, Eq. (1)] as

Ett+∇×
(

c2
v∇×E

)

+ω2
pE− J(E)=0, in Ω× I, (1.1)

where E is the electric field, ωp is the plasma frequency, and J is the polarization current
density represented as

J(x,t;E)≡ J(E)=νω2
p

∫ t

0
e−ν(t−s)E(x,s)ds, (1.2)

here ν≥ 0 is the electron-neutral collision frequency. In cv, ǫ0 and µ0 represent the per-
mittivity and permeability in vacuum, respectively. Here I=(0,T) is a finite time interval
and Ω is a bounded Lipschitz polyhedron in R3.

Moreover, we assume that the boundary of Ω is a perfect conductor so that

n×E=0, on ∂Ω× I, (1.3)

where n denotes the unit outward normal of ∂Ω. Furthermore, we assume that the initial
conditions for (1.1) are given as

E(x,0)=E0(x) and Et(x,0)=E1(x), (1.4)

where E0(x) and E1(x) are some given functions.


