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Abstract. We develop in this paper efficient and robust numerical methods for solv-
ing anisotropic Cahn-Hilliard systems. We construct energy stable schemes for the
time discretization of the highly nonlinear anisotropic Cahn-Hilliard systems by using
a stabilization technique. At each time step, these schemes lead to a sequence of lin-
ear coupled elliptic equations with constant coefficients that can be efficiently solved
by using a spectral-Galerkin method. We present numerical results that are consis-
tent with earlier work on this topic, and also carry out various simulations, such as
the linear bi-Laplacian regularization and the nonlinear Willmore regularization, to
demonstrate the efficiency and robustness of the new schemes.
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1 Introduction

The phase-field method has been frequently used in the study of the dynamics of het-
erogeneous materials, such as crystal growth, phase separations in binary mixtures, and
multi-phase fluid flows. Its ubiquitous advantage over the sharp-interface approach is
that there is no need to track the interface explicitly. Usual phase-field approaches often
lead to a second-order Allen-Cahn equations [1] or a fourth-order Cahn-Hilliard equa-
tion [3]. It is usually more challenging to solve the Cahn-Hilliard equation than the Allen-
Cahn equation due to its high-order nature and its stiffness caused by small parameters
in the physical system.

We consider in this paper a classical problem in materials science, namely, determin-
ing the equilibrium shape of a solid crystal in its own liquid matrix. When anisotropy
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of the micro-mechanical system is sufficiently strong, the surface energy function, f (φ),
may become too large or singular on certain orientations. Thus, these orientations may be
missing in the equilibrium shape (or Wulff shape) in order to achieve a well-defined en-
ergy for the system. Consequently, the equilibrium interface will not be a smooth curve,
but present facets and corners with slope discontinuities (cf. [17]). Fundamentally, the
gradient energy density loses its convexity (see a proof in the Appendix of [20]) when
the so-called ‘surface stiffness’ changes its sign (cf. [10] for the sharp interface approach
on the same topic). In this case, the corresponding Cahn-Hilliard equation is intrinsically
of a backward parabolic type. Thus it is an ill-posed problem and requires regulariza-
tions. The linear bi-Laplacian regularization and the nonlinear Willmore regularization
(cf. [6, 7, 11]) will be considered in this paper. While the former is easier to deal with
numerically, its asymptotic results does not match the correct physics. The latter is more
physically consistent, with sharp corners of the Wulff shape replaced by rounded cor-
ners while major parts of edges remains unchanged, but its free energy is also much
more complicated. Both regularizations lead to a sixth-order Cahn-Hilliard type equa-
tions which present significant challenges for developing efficient and accurate numer-
ical schemes. There are two main difficulties: (i) the presence of a small parameter ǫ,
representing the interfacial width, which makes the (time continuous) discretized system
very stiff; and (ii) the high-order spatial derivatives, which make the spatially discretized
system very difficult to solve.

In [8], the authors used a second-order central difference discretization in space for
solving the anisotropic Cahn-Hilliard equation. A convexification technique was em-
ployed so that the regularization was not needed. However, it used an explicit time
discretization, resulting in severe time step restrictions. In the recent work [18, 20], the
authors solved the regularized anisotropic Cahn-Hilliard system with an adaptive non-
linear multigrid finite difference method.

We propose to solve the regularized anisotropic Cahn-Hilliard systems with a sta-
bilized time discretization that allows large time steps and a spectral discretization in
space. Unlike in [18,20], our numerical schemes do not lead to a nonlinear system at each
time step, instead, only a system of three coupled linear elliptic equations with constant
coefficients that can be efficiently solved by a suitable spectral method.

The paper is organized as follows: in Section 2, we describe the governing PDE sys-
tem for the anisotropic crystal growth. The main idea of the paper is given in Section 3,
where we propose our time discretizations and spectral methods for the system. Numer-
ical tests and simulations are given in Section 4. We conclude with a few remarks in the
last section.

2 Phase-field models for anisotropic systems

Let Ω⊂R
d (d=2,3), and φ(x) be an order parameter that takes the values ±1 in the two

phases with a smooth transitional layer of thickness ǫ. We consider the following free


