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Abstract. We show how to apply convolution quadrature (CQ) to approximate the
time domain electric field integral equation (EFIE) for electromagnetic scattering. By a
suitable choice of CQ, we prove that the method is unconditionally stable and has the
optimal order of convergence. Surprisingly, the resulting semi discrete EFIE is disper-
sive and dissipative, and we analyze this phenomena. Finally, we present numerical
results supporting and extending our convergence analysis.
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1 Introduction

The exterior electromagnetic scattering problem is often solved in the frequency domain,
either by integral equations or by a finite element method. However, if the incoming
wave is broad band, it may be attractive to solve the problem in the time domain. In this
case we can again choose between volume based methods including the finite difference
or discontinuous Galerkin methods and time domain integral equations. It is the latter
technique that is the subject of this paper.

Historically the main difficulty with the time domain integral equation (TDIE) ap-
proach is stability. In recent years this problem has been overcome by using a time do-
main Petrov-Galerkin method [22] and this method is now the method of choice [1, 17].
However, in order to maintain stability, it is necessary to perform accurate integrations on
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complex domains obtained by intersecting regions between light cones with triangles in
the spatial mesh [21]. This rules out simple quadrature on the spatial mesh, and implies
that curvilinear patches (necessary for high order boundary representation) are difficult
to implement because of the potentially much more complex domain of integration. In
addition it is not easy to account for dispersive and dissipative media in such schemes
because it is necessary to have an expression for the fundamental solution (although sev-
eral engineering approaches have been suggested for specific media [14]). Convolution
Quadrature (CQ) offers a potential alternative that is the subject of this paper.

We now detail the problem to be solved. Suppose a perfect conductor occupies a
bounded Lipschitz polyhedron Ω ⊂ R

3 with boundary Γ := ∂Ω. Let Ωe := R
3\Ω. In

addition suppose Γ is connected and simply connected. The time domain electromagnetic
scattering problem is then to find E :=E (x,t)∈H(curl,Ωe) such that

Ett+curlcurlE =0, in Ωe×[0,T],

E ×n= g, on Γ×[0,T],

E (·,0)=Et(·,0)=0, on Ωe.

(1.1)

Here, n is the unit outward normal to Γ and g is a given tangential vector field on Γ,
vanishing for t ≤ 0, usually obtained as a suitable trace of the incident electromagnetic
field (that is g =−E i×n where E i is the incident field taken to be a regular solution of
Maxwell’s equations ). For convenience and without loss of generality, we have set the
speed of light c=1.

To formulate an integral equation for this problem we can use the ansatz that there is
a surface tangential field J := J(x,t) such that, for x∈Ωe,

Et(x,t)=M(∂t)J(x,t)

:=
∫ t

0

∫

Γ
k(x−y,t−τ)Jtt(y,τ)dσydτ−grad

∫ t

0

∫

Γ
k(x−y,t−τ)divΓJ(y,τ)dσydτ, (1.2)

where the time domain fundamental solution in three dimensions is k(x,t) := δ(t−|x|)
4π|x|

(this

is just the inverse Fourier transform of the usual frequency domain fundamental solution
[8]). In addition divΓ is the surface divergence.

If we now define the surface tangential projection ΠTu :=n×(u×n)|Γ, let x approach
Γ in (1.2), and use the boundary data from (1.1), we obtain the Electric Field Integral
Equation (EFIE). In particular, we need to find J such that, for all x∈Γ and 0≤ t≤T,

V(∂t)J(x,t)

:=ΠT

∫ t

0

∫

Γ
k(x−y,t−τ)Jtt(y,τ)dσydτ−gradΓ

∫ t

0

∫

Γ
k(x−y,t−τ)divΓJ(y,τ)dσydτ

=n×gt(x,t), (1.3)

where gradΓ is the surface gradient. Once J is computed, we can compute the electric
field E for x 6∈Γ by integrating (1.2). Clearly these integral equations need to be carefully
formulated in appropriate function spaces and we do this in the next section.


