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Abstract. In this paper, we investigate by numerical simulations the Bak-Sneppen
model (BSM) for biological evolution on scale-free networks (SFNs) with various de-
gree exponents γ. We find that the punctuated equilibrium is rather robust with re-
spect to the network topology. Furthermore, we analyze the evolution of the critical
average fitness 〈 f 〉∗ and the exponent τ of 〈 f 〉0 avalanche as a function of α (i.e., the de-
gree exponent γ). Our observations indicate the dependence of evolutionary dynamics
of BSM on the complex biosystem topology.
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1 Introduction

The Bak-Sneppen model (BSM) [1], which was proposed by Bak and Sneppen in 1993,
can generate the punctuated equilibrium behavior observed in the evolution of many
species. In the BSM, random numbers fi, drawn from a uniform distribution between 0
and 1, p( f ), are assigned to each species located on an n-dimensional lattice with peri-
odic boundary conditions. At each time step, the extinct species, i.e., the species with the
smallest random number, and all its nearest neighboring species, are assigned new ran-
dom numbers also chosen from p( f ). After a long transient process the system evolves
into a self-organized critical state which is statistically stationary, where the density of fit-
ness values in the system is uniform above fc (the self-organized threshold) and vanishes
for f < fc, and the avalanches of mutations occur on all scales.
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Despite the fact that it is an oversimplification of the evolution of real species, the
BSM shows some common interesting features observed by paleontologists, such as the
punctuated equilibrium, power-law probability distributions of lifetimes of species and
sizes of extinction events [2]. Since the BSM was introduced, the model has been paid
much attention. For instance, Li and Cai [2, 3] studied different hierarchy of avalanches,
exact equations and scaling relations for 〈 f 〉0 avalanches in the BSM. On the other hand,
many real biological networks, such as the food webs [4, 5], the metabolic networks [6, 7]
and the protein networks [8, 9], share some universal characteristics such as the small-
world effect and the power-law degree distribution p(k)∼k−γ . These features may affect
the dynamics of the networks on which the species are placed. Hence, it is important to
study the effects of complex biosystems topology on the evolutionary dynamics of BSM.
Recently, the BSM has been studied on random networks (RNs) [10], small-world net-
works (SWNs) [11] and scale-free networks (SFNs) [12,13]. Moreno and Vazquez studied
the avalanche size distribution and the activity time behavior at nodes with different con-
nectivity of BSM only on a SFN with γ =3 [12]. Lee and Kim studied the dependence of
the critical fitness fc and the avalanche size distribution P(S) on the connectivity property
of SFN [13], from the viewpoint of microscopic. Here, we focus on the dependence of the
evolutionary dynamics of BSM on the complex system topology, especially the exponent
of the connectivity distribution, from the viewpoint of macroscopic.

In order to do this, we study the evolutionary dynamics of BSM on SFNs, which is
generated by using the static model [15] instead of the preferential attachment growth
algorithm [16], with various degree exponent γ∈ (2,∞). Generically, the system reaches
a steady state where the average fitness 〈 f 〉 approaches a critical value 〈 f 〉∗ and all the
〈 f 〉s are smaller than the critical average fitness 〈 f 〉∗ as time t→∞. And the 〈 f 〉∗ decreases
with the tunable parameter α, which is related to the degree exponent γ via γ=(1+α)/α,
increasing. On the other hand, SFNs with the degree exponent 2 < γ≤ 3 are physically
different from those with γ>3 [14]. Furthermore, we focus on the evolution of 〈 f 〉∗ and
the exponent τ of the 〈 f 〉0 avalanche size distribution P(S)∼ S−τ as a function of the
parameter α, i.e., the degree exponent γ. We find that the complex network structure
plays a crucial role in the evolutionary dynamics of BSM. Furthermore, we analyze 〈 f 〉∗
as a function of α on SFNs with various system sizes N, and find that the BSM on SFNs
with 2<γ≤3 self-organizes into a stationary state where the critical average fitness 〈 f 〉∗→
0.5 for N →∞, just as fc → 0 for N →∞ found in [12, 13]. Finally, we classify the SFNs
into three different categories: random for γ >4.3, linear for 3< γ <4.3 and physical for
2<γ≤3, from the viewpoint of dynamics.

2 Model

Many real biological systems can be well mapped to complex networks, which are sets
of nodes i = 1,2,··· ,N, connected by a number of l = 1,2,··· ,L edges. The network is
represented by its adjacency matrix A, where Aij = 1, if an edge connects nodes i and j


