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Abstract. We present a fast Poisson solver on spherical shells. With a special change
of variable, the radial part of the Laplacian transforms to a constant coefficient differ-
ential operator. As a result, the Fast Fourier Transform can be applied to solve the
Poisson equation with O(N3 logN) operations. Numerical examples have confirmed
the accuracy and robustness of the new scheme.
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1 Introduction

The purpose of this paper is to propose a simple fast solver for the Poisson equation in a
spherical shell





∂ρ(ρ2∂ρu)

ρ2
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∂θ(sinθ∂θu)

ρ2sinθ
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∂2
φu

ρ2sin2 θ
= f , in Ω,

u|ρ=ρmin =uL(θ,φ),

u|ρ=ρmax =uR(θ,φ),

(1.1)
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where
Ω=

{
ρmin <ρ<ρmax, 0≤ θ≤π, 0≤φ≤2π

}
.

The Poisson equation in the spherical shell geometry is important in many geophysical
and solar-physical applications [5, 14, 15].

Eq. (1.1) can be put in a more symmetric form





∂ρ

(
ρ2∂ρ sin2θ u

)
+(sinθ∂θ)

2u+∂2
φu=ρ2(sin2θ) f , in Ω,

u|ρ=ρmin =uL(θ,φ),

u|ρ=ρmax =uR(θ,φ).

(1.2)

In this symmetric form (1.2), one can apply Fast Fourier Transform to both the θ and
φ derivatives (see Section 2 for details) to obtain optimal efficiency. The major obstacle
for developing an overall fast solver is the radial derivatives which constitute a variable
coefficient differential operator. The most popular approaches include Poisson solvers
based on FFT in two directions or spherical harmonic functions which requires a Fast
Legendre transform [1,4,6,7,9,12,13,16]. There are also other approaches using different
sets of grids such as the Cubed Sphere grid [11] and the Yin-Yang grid [17].

In this paper, we propose a simple alternative, which provides a more accessible fast
solver to (1.2) via FFT in all three variables. We propose the following simultaneous
change of dependent and independent variables

s=
lnρ−lnρmin

lnρmax−lnρmin
, (1.3a)

v=
√

ρ u. (1.3b)

It is easy to see that, under the transformation (1.3), the Poisson equation (1.1) now takes
the form

sin2 θ
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)
v+(sinθ∂θ)

2v+∂2
φv= g≡ρ

5
2 sin2 θ f , (1.4)

where

α=(lnρmax−lnρmin)−2, (1.5)

with boundary data

v|s=0 =vL(θ,φ)≡√
ρmin uL(θ,φ), (1.6a)

v|s=1 =vR(θ,φ)≡√
ρmax uR(θ,φ). (1.6b)

The significance of the transformation (1.3) is that the radial part now becomes a constant
coefficient differential operator. As a consequence, the discretized operator for (α∂2

s −
1/4) can be fast-diagonalized via FFT, resulting in an fast solver with total O(N3 logN)


