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Abstract. Plasmas in modern tokamak experiments contain a significant fraction of
impurity ion species in addition to main deuterium background. A new unlike-particle
collision operator for δ f particle simulation has been developed to study the non-
local effects of impurities due to finite ion orbits on neoclassical transport in toroidal
plasmas. A new algorithm for simulation of cross-collisions between different ion
species includes test-particle and conserving field-particle operators. An improved
field-particle operator is designed to exactly enforce conservation of number, momen-
tum and energy.
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1 Introduction

To understand the performance of fusion toroidal devices in improved confinement
regime when the turbulent transport is reduced in the ion channel, the experimental data
is compared with neoclassical transport level. Neoclassical theory has been well devel-
oped [1–3] to understand this irreducible transport in local small ion orbit limit. And a
direct numerical solution of the drift kinetic equations globally is needed to address non-
local features of the dynamics [4–6] near magnetic axis or sharp profile gradients where
basic assumptions of most local theories are violated. In addition to main ion species,
which is normally deuterium, most of experimentally relevant plasmas contain one or
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more ion species. Consequently, impurity particles can make a significant contribution
to main deuterium heat flux indirectly by producing additional cross-species collisions.
In this paper we address the development of an unlike-particle collision operator for δ f
particle simulation technique. In addition to a test-particle operator, we describe a new
field-particle operator which conserves particle number, energy and momentum.

The distribution function Fs(X ,t) species s (with mass ms and charge Zs) evolves ac-
cording to the drift-kinetic equation

D

Dt
Fs ≡

(

∂

∂t
+Ẋ · ∂

∂X

)

Fs =∑
b

Csb[Fa,Fb]. (1.1)

The operator on the right hand side describes self-collisions of species s as well as cross-
collisions between various species. The guiding center coordinates X = (x,ρ||,µ) evolve
according to the Lagrangian equations

d
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(

∂

∂Ẋ
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)

− ∂

∂X
Ls =0. (1.2)

Here Ls is Lagrangian and x = (r,θ,ζ) where r, θ and ζ are radial, poloidal and toroidal
spatial coordinates correspondingly. The magnetic moment µ = msv

2
⊥/2B (µ̇ = 0 due to

conservation of the adiabatic moment) and parallel gyroradius ρ|| = msv||/ZseB are ex-
pressed in terms of parallel and perpendicular velocities v|| and v⊥.

The δ f algorithm [4, 7, 8] involves solving the following equation

D
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(

Csb[δ fs,F0b]+Csb[F0s,δ fb]
)

, (1.3)

which is obtained directly from Eq. (1.1) by substituting Fs = F0s+δ fs and linearising the
collision operator. F0s is a time-independent shifted Maxwellian distribution function
which satisfies Csb[F0s,F0b]=0 for any s and b.

The local shifted Maxwellian background distribution function is written in the fol-
lowing form [4, 9]

F0s ≡F0s(ns,T,U‖)=ns

( ms
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)3/2
exp
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2/2+µB

)

]

. (1.4)

Here na(r)≡〈na(r,θ)〉, T(r) and ωt(r)=[B/I(r)]U‖(r,θ) are experimentally given profiles
for the ion density, temperature and toroidal angular frequency. I(r) = RBζ , where R is
the major radius, Bζ and Bθ are the toroidal and poloidal components of the magnetic
field B.

Since the constraint Csb[F0s,F0b]=0 on background Maxwellian distribution functions
must be satisfied, one need to have the same ion temperature T(r) and parallel flow U‖(r)
profiles in the distribution functions (1.4) for all species. The difference between exper-
imentally observed temperatures Ts(r) and toroidal angular frequencies ωts(r) between
different species is captured by initial δ fs(t=0) in the following form

δ fs(t=0)= F0s(ns,Ts,U||s)−F0s(ns,T,U||). (1.5)


